Глава 4. Ионизирующая радиация в повседневной жизни
В предыдущих главах обсуждалась радиационная обстановка на нашей планете в глобальном масштабе. Мы рассмотрели источники и уровни облучения естественного фона радиации, действующие в биосфере, остановились на изменениях радиоактивного фона вследствие испытаний ядерного оружия. Мы убедились, что радиационное воздействие от атомных электростанций вряд ли увеличит естественный уровень радиоактивности на нашей планете. Для тревоги нет оснований, особенно при сопоставлении пользы от атомных электростанций с их неизмеримо малым влиянием на радиоактивность окружающей нас среды. Все подсчеты велись крупномасштабно: в отношении всей планеты и человечества на десятки лет вперед.
Но естественно возникает вопрос: а не сталкиваемся ли мы с невидимыми лучами в повседневной жизни помимо этих глобальных источников? Не создает ли человек вокруг себя дополнительные источники радиации при той или иной деятельности, не пользуемся ли мы этими источниками, подчас не ассоциируя их с действием атомной радиации?
В современной жизни человек действительно создает ряд воздействующих на него источников, иногда очень слабых, а подчас и достаточно сильных. Читателю, наверное, интересно будет узнать, что это за источники и чего от них можно ожидать.
Прежде всего, рассмотрим хорошо известные рентгеновские диагностические аппараты, которыми снабжены все поликлиники и с которыми мы сталкиваемся при всевозможных профилактических обследованиях, проводимых в массовом масштабе среди населения. Статистика показывает, что количество лиц, проходящих рентгеновское обследование, возрастает с каждым годом на 5 - 15% в зависимости от страны, уровни медицинского обслуживания. Все мы хорошо знаем, какую огромную пользу приносит современной медицине рентгенодиагностика. Человек заболел. Врач усматривает признаки серьезного заболевании. Рентгеновское обследование часто дает решающие данные, следуя которым врач назначает лечение и спасает жизнь человеку. Во всех этих случаях уже не важно, какую дозу облучения получит больной при той или иной процедуре. Речь идет о заболевшем человеке, о ликвидации непосредственной угрозы его здоровью, и в этой ситуации вряд ли уместно рассматривать возможные отдаленные последствия от самой процедуры облучения.
Но за последнее десятилетие в медицине наметилась тенденция усиленного использования рентгеновских обследований здорового населения, начиная от школьников и призывников в армию и кончая населением зрелого возраста - в порядке диспансеризации. Конечно, врачи и здесь ставят перед собой гуманные цели: своевременно выявить начало еще скрытой болезни, чтобы вовремя и с большим успехом начать лечение. В результате тысячи, сотни тысяч здоровых людей проходят через рентгеновские кабинеты. В идеале врачи стремятся такие обследования проводить ежегодно. В результате общая облученность населения повышается. О каких же дозах облучения идет речь при медицинских обследованиях?
Научный комитет по изучению действия атомной радиации при ООН тщательно изучил этот вопрос, и полученные выводы многих удивили. Оказалось, что на сегодняшний день наибольшую дозу облучения население получает именно от медицинских обследований. Подсчитав общую среднюю дозу облучения для всего населения развитых стран от различных источников радиации, комитет обнаружил, что облученность от силовых реакторов даже к 2000 г. вряд ли превысит 2-4% от естественной радиации, от радиоактивных осадков 3-6%, а от медицинских облучений население ежегодно получает дозы, достигающие 20% естественного фона.
Каждое диагностическое "просвечивание" дает на исследуемый орган облучение, начиная от дозы, равной годовой дозе от естественного фона (примерно 0,1 рад), до дозы, превышающей его в 50 раз (до 5 рад). Особый интерес представляют дозы, получаемые при диагностических просвечиваниях критическими тканями, такими, как гонады (повышение вероятности генетического повреждения потомства) или кроветворные ткани, такие, как костный мозг.
В среднем медицинские диагностические "просвечивания" рентгеном для населения развитых стран (Англия, Япония, СССР, США, Швеция и др.) составляют среднюю годовую дозу, равную одной пятой части естественного фона радиации.
Это, конечно, в среднем очень небольшие дозы, сопоставимые с естественным фоном, и вряд ли здесь уместно говорить о какой-либо опасности. Тем не менее, современная техника позволяет уменьшить дозовые нагрузки при профилактических осмотрах, и это должно быть использовано.
Старая медицинская заповедь "не повреди" должна строго соблюдаться при всяком рентгеновском обследовании, особенно при массовых обследованиях людей в молодом возрасте. Значительного снижения дозы облучения при рентгеновских обследованиях можно достигнуть, совершенствуя аппаратуру, защиту, повышая чувствительность регистрирующих устройств и сокращая время облучения.
Где еще в нашей повседневной жизни мы сталкиваемся с повышенной ионизирующей радиацией?
Одно время (примерно к середине нашего столетия) широкое распространение получили часы со светящимся циферблатом. Люминесцирующая масса, наносимая на циферблат, включала в свой состав соли радия. Излучения радия возбуждали люминесцирующую краску, и она светилась в темноте голубоватым светом. Но γ- излучения радия с энергией 0,18 МэВ проникало за пределы часов и облучало окружающее пространство. Обычные ручные светящиеся часы содержали от 0,015 до 4,5 мКи радия. Расчет показал, что наибольшую дозу радиации (около 2-4 рад) за год получают мышечные ткани руки. Мышечная ткань сравнительно радиоустойчива, и это обстоятельство не тревожило радиобиологов. Но светящиеся часы, находящиеся на руке очень много времени, расположены на уровне гонад и, следовательно, могут вызвать значительное облучение этих радиочувствительных клеток. Именно поэтому были предприняты специальные расчеты дозы, приходящейся на эти ткани за год.
Исходя из расчета, что часы находятся на руке 16 ч в сутки, была вычислена возможная доза облучения гонад. Она оказалась лежащей в пределах от 1 до 60 мрад/год. Значительно большую дозу можно получить от больших карманных светящихся часов, особенно если их носить в кармане брюк или нижнем кармане жилета. При этом доза облучения может возврасти до 100 мрад. Обследование продавцов, стоящих за прилавком со множеством святящихся часов, показало, что доза облучения была около 70 мрад. Подобные дозы, удваиваются естественный радиоактивный фон, увеличивают вероятность появления наследственных повреждений в потомстве. Вот почему Международное агентство по мирному использованию атомной энергии в 1967 г. рекомендовало заменить радий в светящихся массах такими радионуклидами катритий (Н3) или прометий-147 (Pm147), обладающая мягким излучением β- излучением, полностью поглащаемым часовой оболочкой.
Нельзя не упомянуть о множестве святящихся приборов в кабинах самолетов, пультах управления и др. Конечно, уровни радиации очень различны в зависимости от количества приборов, их расположения и удаленности от работающего, что постоянно должны учитывать органы санитарного надзора.
Мы не будем разбирать вопросы профессиональной вредности. Речь пойдет о телевизоре, который используется в повседневной жизни любимого гражданина. Телевизоры распространены в современном обществе столь широко, что вопрос о дозе радиации, поступающей от телевизора, был тщательно исследован. Интенсивность слабого вторичного излучения экрана, бомбордируемого электронным пучком, зависит от напряжения, под которым работает данная система телевизора. Как правило, черно-белый телевизоры, работающие при напряжении в 15 кВ, дают наповерхности экрана дозы 0,5 - 1 мрад/ч. Однако это мягкое излучение поглощается стеклянным или пластиковым покрытием трубки, и уже на расстоянии 5 см от экрана радиация практически не обнаруживается.
Иначе дело состоит с цветными телевизорами. Работая на значительно большем напряжении, они дают от 0,5 до 150 мрад/ч вблизи экрана (на расстоянии 5 см). Предположим, вы смотрите цветной телевизор три - четыре дня в неделю по три часа в день. В год получим от 1 до 80 рад (не миллиард, а рад!). Эта цифра уже значительно превосходит естественный фон облучения. В действительности получаемые людьми дозы значительно меньше. Чем больше расстояние от человека до телевизора, тем меньше доза облучения - она падает пропорционально квадрату расстояния.
Радиация от телевизора не должна нас волновать. Системы телевизоров все время совершенствуются и внешняя их радиация снижается.
Еще один источник слабых излучений в нашей повседневной жизни - это изделия из цветной керамики и майолики. Для создания характерного цвета глазури, придающего художественную ценность керамической посуде, вазам и блюдам из майолики, издревле используются соединения урана, образующие жаропрочные краски. Уран - долгоживущий естественный радионуклид - всегда содержит дочерние продукты распада, дающие достаточно жесткое β - излучение, легко обнаруживаемое современными счетчиками вблизи поверхности керамических изделий. Интенсивность излучения быстро падает с расстоянием, и если в квартире на полках стоят керамические кувшины, майоликовые блюда или статуэтки, то любуясь ими на расстоянии 1-2 м, человек получает исчезающее малую дозу облучения. Несколько иначе обстоит дело с довольно распространенными керамическими кофейными и чайными сервизами. Чашку держат в руках, прикасаются к ней губами. Правда, такие контакты кратковременны, и значительного облучения не происходит.
Были проведены соответствующие расчеты для наиболее распространенных керамических чашек для кофе. Если в течении дня 90 мин непосредственно соприкасаться с керамической посудой, то за год от β - радиации руки могут получить дозу облучения от 2 до 10 раз рад. Эта доза в 100 раз превосходит естественный фон облучения.
Интересная проблема возникла в ФРГ и США в связи с широким применением для изготовления искусственных фарфоровых зубов особой запатентованной массы, в состав которой входили соединения урана и церия. Эти добавки вызывали слабую флуоресценцию фарфоровых зубов. Зубные протезы являлись слабыми источниками радиации. Но так как они постоянно находятся во рту, то десны получали ощутимую дозу. Был издан специальный закон, регламентирующий содержание урана в фарфоре искусственных зубов (не выше 0,1%). Даже при таком содержании ротовой эпителий будет получать в год дозу около 3 рад, т. е. дозу в 30 раз большую, чем от естественного фона.
Некоторые сорта оптических стекол изготовляют с добавлением в их состав тория (18-30%). Изготовление линз для очков из такого стекла приводило к слабому, но постоянно действующему облучению глаз. Сейчас содержание тория в стеклах для очков регламентируется законом.
Таковы наши встречи с невидимыми лучами в повседневной жизни.