НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

предыдущая главасодержаниеследующая глава

Источники углерода

Организмы, живущие за счет неорганического источника углерода (двуокиси углерода), называют автотрофными (автотрофами) (греч. autos - сам), а организмы, использующие органический источник углерода, - гетеротрофными (гетеротрофами) (греч. heteros - другой). В отличие от гетеротрофов автотрофы удовлетворяют все свои потребности в органических веществах, синтезируя их из простых неорганических соединений.

В табл. 9.1 представлены обе эти классификации - по источнику энергии и по источнику углерода. Хорошо видны их взаимоотношения. Кроме того, выявляется еще один очень важный принцип, а именно то, что хемотрофные организмы целиком зависят от фототрофных, которые поставляют им энергию, а гетеротрофные организмы полностью зависят от автотрофов, снабжающих их соединениями углерода.

Таблица 9.1. Классификация живых организмов в соответствии с основным источником углерода и энергии*
Таблица 9.1. Классификация живых организмов в соответствии с основным источником углерода и энергии*

* (Большинство организмов относится к фотоавтотрофам или хемогетеротрофам.)

Самые важные группы - фотоавтотрофы (к которым относятся все зеленые растения) и хемогетеротрофы (все животные и грибы). Если на время пренебречь некоторыми бактериями, положение еще более упростится, и можно будет сказать, что гетеротрофные организмы в конечном счете зависят от зеленых растений, доставляющих им энергию и углерод. Иногда фотоавтотрофные организмы называют голофитными (греч. holos - целый, полный, phyton - растение).

9.1. Дайте определение, что такое фотоавтотрофное питание и хемогетеротрофное питание.

Игнорируя пока две меньшие группы (см. табл. 9.1), мы должны, однако, сразу же отметить, что жизнедеятельность хемосинтезирующих организмов тоже имеет очень важное значение - это мы увидим в разд. 9.10 и 9.11.

Несколько организмов нельзя всецело отнести к какой-то одной из четырех групп. Так, например, Euglena обычно ведет себя как автотроф, но некоторые виды могут жить как гетеротрофы и в темноте, если имеется источник органического углерода. Взаимоотношения между двумя главными категориями еще лучше представлены на рис. 9.1; здесь показано также, каким образом потоки энергии и углерода включаются в общий круговорот между живыми организмами и средой. Эти вопросы имеют важное значение для экологии (гл. 12).

Рис. 9.1. Поток энергии (белые стрелки) и круговорот углерода (закрашенные стрелки) у фотоавтотрофов и хемогетеротрофов и сбалансированность фотосинтеза и дыхания. Световая энергия превращается в химическую в процессе фотосинтеза; химическая энергия используется для синтеза органических соединений из неорганических компонентов. Органические соединения служат источником углерода и энергии для хемогетеротрофов: углерод и энергия вновь высвобождаются в процессе дыхания (этот процесс идет и у растений). Всякое превращение сопровождается некоторой потерей энергии в виде тепла
Рис. 9.1. Поток энергии (белые стрелки) и круговорот углерода (закрашенные стрелки) у фотоавтотрофов и хемогетеротрофов и сбалансированность фотосинтеза и дыхания. Световая энергия превращается в химическую в процессе фотосинтеза; химическая энергия используется для синтеза органических соединений из неорганических компонентов. Органические соединения служат источником углерода и энергии для хемогетеротрофов: углерод и энергия вновь высвобождаются в процессе дыхания (этот процесс идет и у растений). Всякое превращение сопровождается некоторой потерей энергии в виде тепла

Углерод высвобождается в процессе дыхания в виде СО2, а СО2 затем снова превращается в процессе фотосинтеза в органические соединения. Более подробно круговорот углерода представлен на рис. 9.2, где показана и та роль, которую играют в этом процессе хемосинтезирующие организмы.

Рис. 9.2. Круговорот углерода. Жирными стрелками показан преобладающий путь (из двух возможных). По некоторым приблизительным оценкам действительное количество углерода составляет: В океане: (в основном в составе фитопланктона): 40·1012 кг углерода в год фиксируется в процессе фотосинтеза в виде СО2. Большая часть его затем высвобождается при дыхании. На суше: 35·1012 кг углерода в год фиксируется при фотосинтезе в виде СО2; 10·1012 кг углерода в год выделяется при дыхании растений и животных; 25·1012кг углерода в год выделяется при дыхании редуцентов; 5·1012 кг углерода в год высвобождается при сжигании ископаемого топлива; этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах
Рис. 9.2. Круговорот углерода. Жирными стрелками показан преобладающий путь (из двух возможных). По некоторым приблизительным оценкам действительное количество углерода составляет: В океане: (в основном в составе фитопланктона): 40·1012 кг углерода в год фиксируется в процессе фотосинтеза в виде СО2. Большая часть его затем высвобождается при дыхании. На суше: 35·1012 кг углерода в год фиксируется при фотосинтезе в виде СО2; 10·1012 кг углерода в год выделяется при дыхании растений и животных; 25·1012 кг углерода в год выделяется при дыхании редуцентов; 5·1012 кг углерода в год высвобождается при сжигании ископаемого топлива; этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах

9.2. Рассмотрите рис. 9.2. Какие типы питания представлены здесь а) на сером фоне и б) на белом фоне?

9.3. Каков общий годовой оборот углерода в природе?

предыдущая главасодержаниеследующая глава

Лишь на первоначальный взгляд великолепные барышни тихи. В трахе с недорогими индивидуалками не приходится грустить. Увериться в этом сумели пользователи интим портала http://prostitutki-kaliningrad.info/myprice/1800-2500/, присоединяйтесь и вы к их составу.








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь