|
18.1. Системы управления в биологии18.1.1. Введение в теорию управленияСтрогое применение теории управления к биологическим процессам позволило глубже понять функциональные взаимоотношения между компонентами многих физиологических механизмов и прояснить многие вещи, которые ранее казались запутанными. Так, например, живые системы рассматриваются теперь как открытые системы, поскольку они нуждаются в постоянном обмене веществами с окружающей средой. В самом деле, живые системы находятся в динамическом равновесии со средой; нужен постоянный приток энергии, чтобы предотвратить полное уравновешивание с окружающим миром. Равновесие возможно только после смерти организма, когда он становится термодинамически стабильным по отношению к среде. Основные компоненты любой системы управления показаны на рис. 18.1. Рис. 18.1. Основные компоненты системы управления Мерой эффективности всякой управляющей системы является степень отклонения регулируемого параметра от должного (оптимального) уровня и скорость возвращения к этому уровню. Гомеостатические механизмы должны иметь свободу колебаний, так как именно колебания активируют систему управления и возвращают переменную к оптимальной величине. Подобные системы основаны на таком соединении их компонентов, при котором выход может регулироваться входом, т.е. они действуют по принципу обратной связи. В большинстве систем с обратной связью выход служит одновременно входом. Для осуществления обратной связи необходимо, чтобы результат работы данной системы сравнивался с заданным значением ("уставкой"), являющимся оптимальным значением регулируемого параметра (переменной), и в случае отклонения от него соответствующим образом изменялся. Существуют два вида обратной связи - отрицательная и положительная. Первая более распространена в гомеостатических системах живых организмов. Отрицательная обратная связь повышает стабильность системы (рис. 18.2). При нарушении равновесия системы возникает ряд последствий, которые приводят к устранению этого нарушения и к возвращению системы в исходное состояние. Принцип отрицательной обратной связи можно рассмотреть на примере регулирования температуры в электрической печи. Система управления в электрической печи состоит из входа (электрический ток, проходящий через нагревательный элемент), выхода (температура печи) и термостата, который может быть установлен на нужную температуру. Термостат действует как модулятор. Если он настроен на температуру 150°С, электрический ток будет идти через нагревательный элемент до тех пор, пока температура в печи не достигнет 150°С, а затем термостат выключится, и нагревание прекратится. Когда температура упадет ниже 150°С, термостат вновь включится и электрический ток опять повысит температуру до заданного значения. В этой системе термостат играет роль детектора ошибки. Ошибкой является разница между фактическим выходом и его заданным значением, и она ликвидируется за счет увеличения входа. Это пример стабильной системы с замкнутой цепью, типичной для многих физиологических регуляторных механизмов. Рис. 18.2. Гомеостатическая система управления. Стрелками показаны направления воздействий Примером биологических механизмов с отрицательной обратной связью может служить регуляция напряжения дыхательных газов в крови, частоты сердечных сокращений, артериального кровяного давления, уровней гормонов и метаболитов в крови, водного и электролитного баланса, регуляция рН и температуры тела. Рис. 18.3 иллюстрирует роль отрицательной обратной связи в регулировании секреции тироксина щитовидной железой. В этом случае модулятор состоит из трех компонентов - детектора (гипоталамуса), регулятора (гипофиза) и эффектора (щитовидной железы). Рис. 18.3. Пример простой биологической системы управления: регуляция секреции тироксина (см. разд. 16.6). TЛ - тиреолиберин; ТТГ - тиреотропный гормон Положительная обратная связь редко встречается в биологических системах, так как она приводит к нестабильности системы и экстремальным состояниям. В этих ситуациях возникшее возмущение вызывает такие последствия, которые еще более его усиливают (рис. 18.2). Например, во время распространения нервного импульса деполяризация мембраны нейрона повышает ее проницаемость для Na+. Ионы Na+ входят в аксон через мембрану и вызывают дальнейшую деполяризацию, которая приводит к возникновению потенциала действия. В этом случае положительная обратная связь действует как усилитель ответа, величину которого ограничивают другие механизмы, описанные в разд. 16.1. В организме существуют и более сложные регуляторные устройства, чем упомянутые выше. Эти механизмы включают дополнительные детекторы (физиологические системы раннего предупреждения) или дополнительные эффекторы (на случай отказа основных), действующие на разных уровнях. Так, например, у гомойотермных животных детекторы температуры, находящиеся внутри тела и на его поверхности, обеспечивают почти постоянную температуру внутренних областей тела. Терморецепторы кожи, играющие роль детекторов окружающей температуры, посылают импульсы в гипоталамус, который выполняет функцию модулятора и вносит коррективы раньше, чем успевает измениться температура крови. В качестве других примеров подобной системы может служить регуляция дыхания при физической нагрузке, а также регуляция аппетита и жажды. Аналогичным образом множественные детекторы и эффекторы обеспечивают до-полнительную надежность регуляции таких жизненно важных параметров, как артериальное давление: рецепторы растяжения каротидного синуса и аорты и барорецепторы продолговатого мозга реагируют на изменения кровяного давления и вызывают ответы различных эффекторов, включая сердце, кровеносные сосуды и почки. Нарушение работы одного из этих органов может компенсироваться работой других. Вы благоволите в удовольствии своих сексуальных потребностей? Сейчас соблазнительные шлюхи со всего мира приготовили для вас очень притягательные предложения, касающиеся секса без обязательств. |
|
|
© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна: http://biologylib.ru/ 'Библиотека по биологии' |