|
18.1.3. Регуляция содержания дыхательных газов в кровиДля дыхания клеток тела необходимо постоянное поступление в них кислорода из тканевой жидкости. С другой стороны, образующаяся в процессе дыхания углекислота не должна накапливаться в клетках или тканевой жидкости, так как это привело бы к нарушению равновесий участвующих в дыхании реакций и к местным изменениям рН, которые могли бы повлиять на скорость ферментативных процессов. Организм осуществляет тонкую регулировку концентрации (или напряжения) СО2 в крови, и она остается относительно постоянной, несмотря на колебания количества доступного кислорода и потребности в нем, которая во время интенсивной мышечной работы может увеличиваться в 20 раз. Частота и глубина дыхания регулируются дыхательными центрами, расположенными в варолиевом мосту и продолговатом мозге (у основания головного мозга) (рис. 18.6). Эти центры посылают к диафрагме и межреберным мышцам ритмические импульсы, которые вызывают дыхательные движения. В основе своей ритм дыхания является непроизвольным, но может изменяться в некоторых пределах высшими центрами головного мозга, о чем свидетельствует способность к произвольной задержке дыхания. Частота и глубина дыхания непосредственно влияют на состав альвеолярного воздуха, который в свою очередь определяет напряжение О2 и СО2 в артериальной крови, снабжающей ткани тела. У человека в покое парциальное давление О2 и СО2 в альвеолярном воздухе и в артериальной крови составляет на уровне моря в среднем 100 и 40 мм рт. ст. соответственно. Поддержание таких уровней О2 и СО2 обеспечивается регуляцией активности дыхательных центров с помощью отрицательной обратной связи. Эту регуляцию осуществляют импульсы, поступающие от рецепторов двух типов - механорецепторов и хемо - рецепторов. К первым относятся рецепторы растяжения, находящиеся в стенках трахеи и легких, вторые - хеморецепторы - имеются в стенках аорты, в каротидных тельцах (расположенных в стенках сонных артерий) и в самом продолговатом мозге. Этот механизм отрицательной обратной связи может модифицироваться высшими центрами головного мозга, что позволяет произвольно усиливать или подавлять активность дыхательных центров, например при задержке или форсировании дыхания, при разговоре, пении, чихании или кашле. Рис. 18.6. Общая схема механизмов, участвующих в регуляции содержания дыхательных газов в крови Действие импульсов, поступающих от рецепторов растяжения, связано в основном с механикой дыхательных движений. Импульсы, возникающие в дыхательных центрах, идут по эфферентным путям спинного мозга. Некоторые аксоны, образующие эти пути, выходят из спинного мозга в его шейном отделе в виде диафрагмальных нервов, направляющихся к диафрагме, тогда как аксоны других нейронов выходят из грудного отдела в составе нервов, направляющихся к наружным межреберным мышцам. Импульсы, поступающие по этим нервам, совместно вызывают вдох. Легкие наполняются воздухом, и рецепторы растяжения, находящиеся в стенках легких и трахеи, возбуждаются и активируют афферентные нейроны блуждающего нерва. Последний временно угнетает центры вдоха, и вдох прекращается. В результате расслабления диафрагмы объем грудной клетки уменьшается, эластичные легкие спадаются и воздух выталкивается из них. Поскольку рецепторы растяжения в легких и трахее больше не стимулируются, снимается угнетение с центра вдоха и дыхательный цикл повторяется. Во время интенсивной физической нагрузки повышенное напряжение СО2 в крови стимулирует центр выдоха, и импульсы от него поступают к внутренним межреберным мышцам; мышцы начинают сокращаться сильнее, и это приводит к более глубокому или частому дыханию. Частота и глубина дыхания регулируются импульсами от хеморецепторов, возникающими в ответ на изменение напряжения О2 и СО2 в крови. Опыты, в которых люди дышали воздухом с различным содержанием О2 и СО2, показали, что в стимуляции дыхания избыток СО2 играет более важную роль, чем недостаток О2. При уменьшении концентрации О2 с 20 до 5% частота дыхания повышалась вдвое, и точно такой же эффект давало увеличение концентрации СО2 всего лишь на 0,2%. Регулирующее влияние СО2 и сниженного рН крови на дыхание осуществляется почти всецело через хеморецепторы аорты, каротидных телец и самого продолговатого мозга. Хеморецепторы аорты и каротидных телец чувствительны также к изменениям концентрации О2, что имеет жизненно важное значение при низком напряжении О2, так как при этом падает активность продолговатого мозга. Усиленная вентиляция облегчает выведение углекислоты из крови путем ее диффузии в альвеолярный воздух, где концентрация СО2 понижается. Это же происходит в случае преднамеренного глубокого дыхания - гипервентиляции. 18.1. Объясните, почему после гипервентиляции частота дыхания уменьшается и человек испытывает головокружение и слабость. На больших высотах (свыше 3000 м) парциальное давление О2 и СО2 в атмосферном воздухе снижено, и соответственно снижено их содержание в альвеолярном воздухе. В связи с уменьшением концентрации СО2 в альвеолярном воздухе в него из крови переходит больше углекислоты, ее содержание в крови оказывается недостаточным для стимуляции хеморецепторов, и она уже не может играть роль стимулятора дыхания. Теперь эту роль играет падение напряжения О2 в крови: оно вызывает стимуляцию хеморецепторов в каротидных тельцах, а последние активируют дыхательные центры. Существует тесная взаимосвязь между дыхательными и сердечно-сосудистыми центрами продолговатого мозга. Изменение кровяного давления, регулируемого сердечно-сосудистыми центрами, влияет на дыхание; например, в случае падения кровяного давления вентиляция легких усиливается, а при его повышении она уменьшается. В свою очередь изменения концентраций дыхательных газов в крови, регистрируемые дыхательными центрами, вызывают изменение кровяного давления (разд. 14.12.6). Приглашаем организовать памятный интимный досуг с благодаря сайту individualkinizhnegonovgorodasweet.net. Тут подобраны частные профили милых шлюх, которым по душе соблазнять мужчин по отличнейшему составу. |
|
|
© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна: http://biologylib.ru/ 'Библиотека по биологии' |