Когда я был студентом биологического факультета Московского университета, мне крупно повезло. Я слушал лекции
замечательных биохимиков и отличных педагогов, академиков С. Северина и В. Энгельгардта.
С. Северин блестящий лектор. И когда я был студентом, и сегодня, в наши дни, на его лекции приходят студенты других факультетов. В его изложении сухие биохимические схемы приобретают характер захватывающих рассказов о трудных дорогах научного поиска. Его лекции о гликолизе и процессах дыхания были динамичными и, я бы сказал, остросюжетными. Как-будто вы сами вместе с лектором распутывали сложный клубок биохимических реакций и становились соучастником и очередных сенсационных открытий, и очередных разочарований.
Представим себе, что мы на лекции. Она подходит к концу. На доске написана стройная цепь химических реакций. Кажется, все ясно и задача решена. Но лектор, как опытный кормчий, ведет аудиторию дальше. "Итак,- говорит он,- загадка процесса дыхания решена или, по крайней мере, близка к разрешению. Однако один маленький, но упрямый факт способен сразить, казалось бы, несокрушимую и даже элегантную гипотезу".
В это время звенит непрошеный звонок.
"Как развивались события дальше,- говорит спокойно лектор,- вы узнаете на следующей лекции".
Секретная лаборатория митохондрий
Академик В. Энгельгардт не только один из создателей современной молекулярной биологии. Во всех областях биологической химии, в которых работали он сам и его сотрудники, сделан существенный вклад.
Необычно смелая научная идея о существовании самой тесной связи между процессами дыхания и образованием богатой энергией аденозинтрифосфорной кислоты была высказана им в начале тридцатых годов. Через несколько лет эта идея нашла полное подтверждение в работах ученых Дании и Советского Союза.
Мы уже знаем, что в молекуле аденозинтрифосфорной кислоты есть три остатка фосфорной кислоты. Если их всего два, такую кислоту называют аденозиндифосфорной. Стоит к аденозиндифосфорной кислоте присоединиться еще одному остатку фосфорной, как получается уже знакомое нам и богатое энергией соединение - аденозинтрифосфорная кислота. Этот процесс биохимики называют специальным термином - фосфорилирование.
Теперь возникает законный вопрос: а где, в каком участке живой клетки это все совершается?
Сегодня ученые хорошо знают, что в митохондриях. Именно здесь идут одновременно процессы фосфорилирования и окисления. Эти два последних научных термина исследователи обычно объединяют и говорят так: образование аденозинтрифосфорной кислоты в митохондриях идет в результате процесса окислительного фосфорилирования, или, иными словами, что процессы окисления сопряжены с процессами фосфорилирования.
И все же самый тонкий механизм образования энергии оставался неясным. "Секретная лаборатория митохондрий" неохотно открывала свои двери перед исследователями. Трудно было объяснить, каким образом энергия, выделяющаяся при окислении, перемещается в молекулы аденозинтрифосфорной кислоты. Разгадкой этого занялись одновременно в нескольких лабораториях Советского Союза и за рубежом.
Пожалуй, наиболее интересные, систематические и оригинальные работы ведутся в лаборатории, возглавляемой талантливым воспитанником биологического факультета Московского университета В. Скулачевым. Но ни одно из научных, даже самых оригинальных, представлений не возникает на пустом месте. У каждого есть и своя предыстория. Имеет ее и точка зрения, отстаиваемая В. Скулачевым и его сотрудниками.
К тому моменту, когда стали формироваться взгляды ученого на природу образования энергии в митохондриях, в науке существовало уже несколько гипотез. Гипотезы рождаются и умирают. Только некоторые из них дорастают до теории и в таком виде существуют более или менее длительный период времени. Большинство гипотез быстро становится достоянием истории.
Пожалуй, одним из самых старых представлений является химическая гипотеза. Ее сторонники рассуждают примерно следующим образом. При окислении от молекулы отнимаются атомы водорода. Атом водорода, как и полагается, состоит из протона и электрона. Иными словами, окисление можно представить не только как отщепление и перенос атома водорода, но и как перенос электронов. Этот процесс сопровождается выделением энергии. По мнению сторонников химической гипотезы, всегда должно образовываться какое-то промежуточное химическое соединение. И именно в нем должна предварительно накапливаться энергия, которая затем консервируется в АТФ.
Химическая гипотеза объясняла многие экспериментальные данные. Но увы! В течение двадцати лет это таинственное промежуточное соединение, богатое энергией, так и не было найдено. Гипотеза не учитывала и другого важного наблюдения - процессы окислительного фосфорилирования могли идти только в митохондриях, у которых мембраны не повреждены. Объяснения этому явлению гипотеза не давала.
"Промежуточное соединение неизвестного химического строения искали и не находили так долго, что у некоторых исследователей закономерно возникла еретическая мысль: а может, его вообще не существует?
Откровенно говоря, автор новой химико-осмотической гипотезы П. Митчел так и думал. П. Митчел - ученый, которого редко встретишь в наше время коллективных исследований. Этот англичанин живет на своей ферме, занимается сельским хозяйством и... биохимией. Судя по всему, такая ситуация его вполне устраивает. Биохимия для него - любимая специальность, сельское хозяйство - средство к существованию.
Первые научные выступления П. Митчела, как и следовало ожидать, встретили более чем прохладно. Когда замахиваются на устоявшиеся представления, это обычно не вызывает восторга. П. Митчел считал, что при переносе атомов водорода (или соответствующих ему электронов) от одного вещества к другому образуется перепад концентраций ионов водорода. Это и служит движущей силой процесса фосфорилирования, при котором происходит наработка энергии.
Все было бы очень хорошо, но, к сожалению, гипотеза П. Митчела долгое время оставалась умозрительной. Ей явно не хватало подкрепления экспериментальным материалом.
Прошло некоторое время.
Упорную осаду биоэнергетической крепости начали ученые Московского университета. Опираясь на ряд рассуждений П. Митчела, сотрудники отдела биоэнергетики развили и обосновали оригинальное представление о биоэнергетическом мембранном потенциале.
Как мы уже знаем, митохондрии снабжены многочисленными мембранами. Биологические ускорители химических реакций, или, иными словами, ферменты, находятся в толще этих мембран. При окислении органических веществ атомы водорода (или соответствующие им электроны) перемещаются от одного фермента к другому. При передаче этих электронов стороны мембран заряжаются по-разному: наружная положительно, а внутренняя - отрицательно. Образуется электрический мембранный потенциал.
Секретная лаборатория митохондрий
Летом 1972 года на одном из заседаний съезда Федераций европейских биохимических обществ, который проходил в городе Амстердаме, к В. Скулачеву подошел улыбающийся П. Митчел. Он признался, что не думал, что его концепция может быть так быстро и убедительно развита и доказана работами советских ученых.
Было бы несправедливым не упомянуть еще об одной гипотезе, пытающейся объяснить механизм окислительного фосфорилирования. Речь идет о так называемом механохимическом представлении.
Известно, что, если к митохондриям добавить, например, неорганический фосфат, они набухают. Если теперь к ним прилить аденозинтрифосфорную кислоту, то они снова сжимаются и выдавливают из себя воду.
Один из известных специалистов в области биоэнергетики, Д. Грин, заметил, что во время активно протекающего процесса окислительного фосфорилирования внутренняя часть митохондрий как бы сжимается. Исследователь высказал оригинальное предположение: при биологическом окислении энергия, освобождающаяся при переносе электронов,используется для перестройки мембран в новое состояние. В этот момент внутренние мембраны особенно богаты энергией, что является движущей силой окислительного фосфорилирования.
Несколько лет назад видного советского специалиста в области биоэнергетики В. Скулачева спросили, что еще нужно сделать для развития этого направления биохимии. Ученый сказал: "Я думаю, что нам надо спокойно дальше работать, и вслед за четким ответом на вопрос, "что происходит в митохондриях", который мы уже имеем, получить не менее четкий ответ на вопрос о том, "как это происходит". Это будет лучшим ответом нашим оппонентам".