НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

предыдущая главасодержаниеследующая глава

Глава 2. Ядерные излучения и живой организм

Луч действует на клетку

Ядерные излучения оказывают на живой организм столь сложное и многообразное действие, что разобраться в нем, понять скрытые пружины лучевого поражения далеко не так просто, как это может представляться на первый взгляд. Что происходит при облучении в мельчайших кирпичиках живого организма - в отдельных живых клетках? Увидеть устройство клетки, узнать, как она живет и изменяется под влиянием облучения, можно только в микроскоп, потому что размеры клеток очень малы - их диаметр составляет сотые доли миллиметра. При увеличении в 1 - 1,5 тыс. раз, которое дает обычный световой микроскоп, можно рассмотреть ядро, иногда с ядрышком, и некоторые другие детали. Но сложнейшее строение живой клетки полностью раскрывается при увеличении в сотни тысяч и миллионы раз, которое может быть получено лишь с помощью электронного микроскопа.

Что же происходит в покоящейся клетке, которую подвергли облучению? Увидеть эти изменения даже в микроскоп можно только в том случае, если клетка облучена большой дозой радиации. При этом клетка выглядит так, как будто она убита высокой температурой или действием яда: она уплотняется или, наоборот, подвергается разжижению, ядро увеличивается в размере, а затем разрушается, оболочка клетки теряет свою непрерывность, клетка умирает.

Меньшие дозы радиации, смертельные для целого организма, могут не оказать видимого влияния на отдельную живую клетку. Однако клетка далеко не всегда успешно сопротивляется действию радиации. Оказывается, и у нее есть своя ахиллесова пята: это период, когда клетка делится.

С тех пор как немецкие ученые Шлейден и Шванн открыли, что все живые организмы состоят из клеток, многие исследователи, наблюдавшие в микроскоп за жизнью клетки, видели, что в ее недрах, как бы мала она ни была, рано или поздно происходят странные и сложные превращения. Внутри клеточного ядра вдруг появляются, становятся видимыми нити или тяжи, состоящие из хроматина,- хорошо окрашивающегося вещества. Оболочка ядра исчезает, а образовавшиеся тяжи - хромосомы - располагаются по экватору клетки в виде звезды. От каждой хромосомы тянутся белые прозрачные нити, которые, сходясь к специальному клеточному центру, или центриоли, образуют фигуру веретена. Проходит некоторое время, и вдруг оказывается, что сначала вместо одной центриоли образовалось две, а затем и каждая хромосома разделилась вдоль на два тяжа. От каждого из них идут к одной из центриолей нити, образующие в клетке два веретена. Половинки хромосом постепенно расходятся к полюсам клетки. Веретена уменьшаются и исчезают, хромосомы свиваются в два клубочка, вокруг которых появляются ядерные оболочки. Еще несколько минут - и по экватору клетки образуется перегородка; сложнейший и строго последовательный процесс деления клетки, процесс митоза, или кариокинеза, завершен - вместо одной клетки возникло две.

Ученые, изучавшие процесс митоза, уже давно обратили внимание на одно важное обстоятельство. У всех растений и животных он совершается в основных своих чертах одинаково. Очевидно, последовательность его фаз, строгий порядок перемещений хромосом - не случайное явление. Создается впечатление, что главная задача митоза - как можно точнее распределить пополам между дочерними клетками хроматин - сильно окрашенное ядерное вещество, из которого состоят хромосомы. Сейчас стало ясно, что это наблюдение верно: хромосомы содержат в зашифрованном виде всю колоссальную по объему информацию о строении и работе клетки, и от правильности ее передачи зависит, будут ли дочерние клетки нормально расти и развиваться или окажутся неизлечимыми инвалидами. Основой структуры хромосом, той волшебной магнитной лентой, на которой записана, закодирована вся жизненная программа клетки, являются длинные полимерные молекулы дезоксирибонуклеиновой кислоты, или сокращенно ДНК. Об этом единственном в своем роде веществе нам придется говорить неоднократно. Пока отметим лишь, что на каждой молекуле ДНК записано (если продолжить сравнение с магнитофонной записью) много разных мелодий. Основное содержание каждой из них - это шифрованная запись структуры одного из клеточных белков. Ведь именно белки - ферменты, гормоны и т. п.- являются основными двигателями обмена веществ, всей жизнедеятельности клетки. Тот участок ДНК, на котором записана схема одной белковой молекулы, ученые называют геном, или цистроном.

Назначение митоза и состоит в том, чтобы сначала обеспечить удвоение хромосом, изготовить точную копию каждой магнитной ленты, каждой шифрованной телеграммы, адресованной потомкам, а затем доставить все телеграммы по назначению, не перепутав, не исказив и не потеряв ни одной. Именно этот сложнейший и ответственнейший в жизни клетки процесс оказался и наиболее ранимым, самым чувствительным к действию ионизирующей радиации.

Представим себе, что делящаяся клетка оказалась на пути потока квантов ядерного излучения. Клетка осталась жива; она дышит, поглощает питательные вещества, растворенные в окружающей жидкости, она растет, двигается и выполняет другие, свойственные ей функции, но клетка эта не делится. При небольших дозах радиации угнетение клеточного деления оказывается временным; проходит несколько часов, а иногда и дней, и процесс деления возобновляется. Если же поток ионизирующих квантов или частиц был велик, способность к делению у клетки может исчезнуть вовсе. Такая клетка растет, увеличивается, достигает гигантских (сравнительно с другими клетками) размеров и в конце концов гибнет, не оставив потомства.

Следовательно, предательская роль облучения не ограничилась простым торможением митоза. В одном случае ионизирующие частицы повреждают тонкую структуру хромосом, в результате разрывов хромосом и неправильного соединения отломков нарушается процесс деления, часть хромосом не может разделиться. Между половинками сохраняются мостики, перешейки, в связи с чем расхождение хромосом затрудняется. В другом случае ядерное вещество разделяется неравномерно, отломки хромосом не срастаются и погибают или срастаются неправильно. Дочерние клетки, лишенные необходимого количества ядерного вещества или содержащие значительный его избыток, не могут нормально развиваться и гибнут, иногда предварительно разделившись. Таким образом, вредоносное действие проникающей радиации может сказаться во втором, третьем поколении клеток, а иногда даже позже.

Ядерные излучения могут вызвать и менее грубые изменения хромосом. Ионизирующая частица, пролетая через ядро, может разрушить или повредить всего один какой-нибудь ген. Тогда в клетке нарушится выработка лишь одного белка. Но и это, казалось бы, небольшое повреждение (в клетке тысячи разных видов белковых молекул) может иметь серьезные последствия и даже привести к гибели, если недостающий белок выполнял в клетке жизненно важную роль и его отсутствие влечет за собой выпадение одной из обменных реакций, а с ней - и обрыв всей цепи обмена веществ. В менее тяжелых случаях наблюдается дезорганизация обмена веществ, накапливаются ядовитые вещества - продукты нарушенного обмена, которые отравляют не только поврежденную клетку, но и соседние здоровые клетки, а иногда с током крови достигают отдельных органов, возможно, даже не подвергшихся облучению, и вызывают в них нарушения, подобные лучевым.

Вот каковы лишь некоторые из повреждений живой клетки, вызываемые проникающей радиацией. Многое при этом зависит от количества, или дозы радиации. Но немало зависит и от самой клетки. При одной и той же дозе и прочих равных условиях клетки разных органов и даже отдельные клетки одного органа реагируют на облучение неодинаково.

Клеточные элементы, входящие в состав крови, имеют различную продолжительность жизни. Красные кровяные тельца-эритроциты - живут 110 - 130 дней, и в каждый момент в состоянии деления находится меньше 1% клеток - предков эритроцитов. Белые кровяные клетки - лейкоциты - живут несколько суток, а одна из их разновидностей - лимфоциты - и того меньше: от нескольких часов до суток; поэтому размножение этих клеток идет относительно быстро. Наблюдая за жизнедеятельностью клеток после облучения, ученые установили, что особенно быстро уменьшается в крови количество лимфоцитов. Та же участь постигает другие белые кровяные тельца, и меньше всего от облучения страдает процесс образования эритроцитов.

Чем больше клеток находится в стадии деления в данном органе или ткани, чем чаще происходят в них митозы, тем большая часть клеток органа повреждается при облучении, тем чувствительнее данный орган к действию радиации. Это установили еще в 1906 г. французские ученые Бергонье и Трибондо.

Однако неправильно было бы думать, что клетка чувствительна к действию ионизирующих лучей только тогда, когда она делится. Нарушить жизнедеятельность любой клетки и даже убить ее можно в любой момент, не дожидаясь наступления митоза. Правда, для этого нужно во много раз увеличить дозу облучения, увеличить количество тех частиц или квантов энергии, которые слагают эту дозу.

Что же происходит в такой пораженной лучами клетке? Какие ее участки, "органы" или, вернее, органоиды (так выражаются цитологи, изучающие строение и жизнь клеток: "цитос" по-гречески означает клетка) страдают в первую очередь?

Многие иностранные специалисты (Айверсон, Гертвиг, Гизе и др.) утверждают, что ядро клетки особенно чувствительно к облучению. В цитологических лабораториях неоднократно проделывались такие тонкие и очень интересные опыты: лучами Рентгена облучали яйцеклетки лягушек, насекомых и других животных. Затем с помощью специальных приспособлений осторожно выделяли ядра облученных клеток и пересаживали в протоплазму необлученных клеток, ядра которых в свою очередь перемещали на место облученных. Таким образом, искусственным путем были получены клетки-гибриды, или клетки-химеры двух видов.

Клетки, у которых облученное ядро оказывалось в окружении здоровой, необлученной протоплазмы, очень часто оказывались неспособными к нормальному росту, развитию, оплодотворению. Некоторое время они жили, но это не была нормальная клеточная жизнь. Поврежденное облучением ядро не справлялось со своими обязанностями, к числу которых, как мы знаем, относится способность к оплодотворению и делению.

В клетках-гибридах второго рода облученная протоплазма со всех сторон окружала ядро, перенесенное сюда волей ученого из здоровой клетки. Однако, несмотря на такое "больное" окружение, здоровое ядро часто не испытывало никаких неудобств. Гибридная клетка росла, сохраняла способность к оплодотворению, а затем делилась, давая начало новому организму. Иногда и в пересаженном здоровом ядре появлялись болезненные изменения: неравномерная окраска, пустоты (вакуоли), отслойка ядерной оболочки и т. п. Все эти опыты очень наглядно продемонстрировали важную роль ядра в жизнедеятельности клетки вообще и при радиационном поражении, в частности.

Интересные результаты, подтверждающие правильность такого вывода, получил и советский ученый академик Б. Л. Астауров. Изучая в течение многих лет закономерности размножения шелкопрядов, Астауров обнаружил у этих насекомых не только партеногенез (т. е. развитие организма из одной материнской яйцеклетки, без оплодотворения), что наблюдается и у некоторых других насекомых, но и андрогенез (развитие из отцовской клетки). Оказалось, что с помощью рентгеновских лучей можно убить ядро материнской яйцеклетки, однако она сохраняет способность к оплодотворению. И хотя в оплодотворенной яйцеклетке остается лишь отцовское ядро, она делится и дает начало организму, очень похожему на отцовский. Таким образом, в этом случае мы имеем дело по существу с особой разновидностью андрогенеза, в котором принимает участие и протоплазма материнской клетки, оставшаяся живой после гибели ядра.

Если с помощью тончайшего пучка ионизирующих частиц - протонов - облучить участок хромосомы, она разрушается и теряет способность к раздвоению. Облучение тем же пучком прилегающего участка протоплазмы не вызывает никаких видимых изменений. Не значит ли это, что только ядро ответственно за гибель облученной клетки? Можно ли думать, что вся остальная масса клетки, которую мы объединяем словом протоплазма, или правильнее - цитоплазма, совершенно нечувствительна к действию лучей? Конечно, нет.

Более высокая чувствительность ядра, по-видимому, связана с теми его структурами, которые играют важную роль во время митоза. Однако все живое вещество, вся масса клетки в той или иной степени страдает от действия лучей, которые нарушают ее внутреннюю жизнь, строго определенные, последовательно сменяющие друг друга процессы обмена веществ.

В клетках и тканях, особенно чувствительных к действию радиации, кроме гибели клеток во время деления и в связи с ним, наблюдается и гибель в период между делениями, так называемая интерфазная гибель (интерфазой называют период между завершением одного митоза и началом следующего, т. е. период жизнедеятельности клетки). В причинах интерфазной гибели клеток (к тому же лишь наиболее чувствительных к радиации) ученые еще полностью не разобрались. С помощью электронного микроскопа ученые рассмотрели, что не только вся клетка окружена оболочкой, но и многие ее элементы имеют мембраны (перегородки). Ядро отделено от цитоплазмы тонкой оболочкой. Лишь во время митоза она исчезает, а к концу его появляется вновь.

Сложную двухслойную оболочку и такие же перегородки внутри имеют митохондрии - "силовые станции" клетки, вырабатывающие энергию для ее жизнедеятельности. В электронный микроскоп видна и так называемая эндоплазматическая сеть - сложное переплетение канальцев, разделенных дамбами и плотинами. Все эти многочисленные перегородки, мембраны, оболочки разделяют клетку на множество отсеков, в каждом из которых совершается своя особая, неповторимая и важная, хотя и незаметная работа (рис. 2).

Рис 2. След тяжелой частицы с ответвлениями вторичных электронов
Рис 2. След тяжелой частицы с ответвлениями вторичных электронов

После того, как невидимый луч пронзил эту сложную живую систему, на первый, взгляд ничего не изменилось в клетке. Но это не так. Смертоносный луч оставил немало разрушений. На его пути встретилось всего несколько десятков белковых молекул. Если учесть, что только в одной клетке таких молекул в десятки миллионов раз больше, такая убыль не кажется серьезной. Однако даже небольшое отверстие в плотине может иметь роковые последствия для всего сооружения. Поэтому разрушение даже нескольких молекул, образующих вместе с тысячами других многочисленные внутриклеточные мембраны, перегородки, может привести к дезорганизации всей жизни клетки.

Основные двигатели обмена веществ в каждой живой клетке - особые белки-ферменты, которые смело можно назвать биологическими катализаторами. Каждый школьник знает, что катализаторы - вещества, которые в ничтожных примесях во много раз ускоряют течение различных химических реакций. Живая природа создала много тысяч особых катализаторов - ферментов, каждый, из которых участвует в ускорении какой-то определенной биохимической реакции. Бесчисленные реакции складываются внутри каждой клетки в единый сложный процесс обмена веществ только благодаря строжайшей упорядоченности внутренних клеточных структур. Каждый фермент в нормальной клетке имеет свое строго определенное место и назначение. Питательные вещества, попавшие в клетку, проходя по внутриклеточным структурам, последовательно подвергаются действию различных ферментов, изменяются под их влиянием и либо полностью сгорают, отдавая заключенную в них энергию клетке, либо расходуются на построение частей клетки.

Итак, достаточно было лучу повредить в нескольких местах внутриклеточные мембраны, как ферменты вышли из своих привычных, строго определенных отсеков и начали действовать на структуры самой клетки. Удивительная последовательность обменных реакций нарушилась, и началось беспорядочное, хаотическое разрушение деталей еще недавно идеально работавшего сложнейшего механизма. Ферменты, освобожденные радиацией из тесных рамок внутриклеточной структуры, начинают действовать особенно активно, изменяют и расщепляют вещества клеточной протоплазмы. В клетках накапливаются вещества, которые в нормальных условиях либо совсем не образуются, либо возникают в ничтожных количествах и существуют недолго. В облученной клетке концентрация таких необычных веществ - продуктов воздействия ядерных излучений - может оказаться настолько высокой, что жизнедеятельность клетки нарушится, и она погибнет. Название этих веществ - радиотоксины - удачно подчеркивает как их ядовитые свойства (токсин-яд), так и происхождение, связанное с воздействием радиации. Накопление радиотоксинов и повреждение хромосомного аппарата клетки - одна из важнейших причин интерфазной гибели клеток.

Клетки различных тканей и органов отличаются по своей структуре, по интенсивности и характеру обменных процессов. Одна и та же доза радиации вызывает в них различную дезорганизацию обмена, количество образующихся радиотоксинов и чувствительность к ним клеток тоже неодинаковы. Поэтому в одних клетках интерфазная гибель не происходит вовсе, в других наблюдается изредка, в третьих является главным результатом лучевого поражения. Чувствительность ткани или органа к радиации зависит, таким образом, и от интенсивности процесса клеточного деления (митотическая гибель), и от особенностей обмена веществ, определяющих степень выраженности интерфазной гибели клеток.

Накопление радиотоксинов не только приводит к гибели клеток, в которых они образовались под влиянием облучения, но и через кровь оказывает воздействие на отдаленные от облученной области органы. Вот к какому результату может привести один единственный луч, разрушивший в начале всего несколько десятков молекул.

Что же происходит при пролете ионизирующей частицы через живую систему?

предыдущая главасодержаниеследующая глава

В сексе вас привлекает классика? Любите обычные позиции? На этом веб-сайте для мужчин http://habarovsk.prostitutki24.soy/services/gospozha/ вы найдете большое микроколичество индивидуалок, активно практикующих услугу госпожа в своей работе с клиентами. | Некоторым девкам по нраву, когда их насилуют, а другим - обратное нет. Вне зависимости от того, какой вид порнухи из этих двух Вы предпочитаете, Вы сможете найти что то, подходящее Вам в нашем архиве с лучшей порнографией с изнасилованием, в котором телки кричат от грубого насилия!








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь