НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

предыдущая главасодержаниеследующая глава

Особенности защиты при облучении нейтронами, протонами и другими частицами

Потоки частиц высоких энергий (электронов, протонов, нейтронов, альфа-частиц и более тяжелых многозарядных ионов) при взаимодействии с молекулами вещества вызывают в нем главным образом ионизацию и возбуждение, т. е. те же основные процессы, что и рентгеновские и гамма-лучи - излучения электромагнитной природы. Во всех случах в роли основных факторов ионизации выступают вторичные электроны или ядра отдачи, расходующие энергию первичной ионизирующей частицы на ионизацию и возбуждение молекул вещества. Таким образом, все виды ядерных излучений оказывают на вещество, в том числе и на живое, принципиально одинаковое воздействие. Очевидно, и последующие процессы, развивающиеся в облученном объекте, будут сохранять сходство, а значит, и противолучевые мероприятий в главном должны быть аналогичны или во всяком случае сходны.

Однако такие физические различия, как различия в массе ионизирующих частиц, их энергии, скорости движения, линейной потере энергии и т. п., могут иметь решающее значение для последующего биологического эффекта и, следовательно, эффективности радиозащитного действия химических препаратов. В отличие от рентгеновских и гамма-лучей, распространяющихся всегда со скоростью света и обладающих поэтому более или менее стабильной и относительно небольшой (0,5 - 2 пары ионов на 1 мк пробега в веществе) линейной потерей энергии, потоки частиц могут обладать очень различной энергией и скоростью. Соответственно изменяется и плотность вызываемой ими ионизации на единицу пути пробега часгицы, различным бывает и биологический эффект. Известное значение имеют также размеры и масса ионизирующей частицы.

При относительно низких энергиях и скоростях частицы вызывают большое количество ионизаций по траектории полета, сравнительно быстро расходуют запас энергии и не проникают глубоко в облучаемую ткань. Классический пример - альфа-частицы, возникающие при радиоактивном распаде урана, тория, радия и т. п. Образуя 5 - 6 тыс. пар ионов на 1 км пути, они не проникают в глубь тела более чем на доли миллиметра. С увеличением энергии и скорости полета частицы быстро растет ее проникающая способность; одновременно снижается линейная потеря энергии. Когда скорость ионизирующих частиц приближается к скорости света, линейная плотность ионизации оказывается приблизительно того порядка, что и при гамма-облучении.

Соответственно изменяется и биологический эффект излучения. Советскими исследователями установлено, что поток протонов с энергией 660 Мэв*, двигающихся с очень большой скоростью, по линейным потерям энергии и биологическому эффекту мало отличается от гамма-излучения. Относительная биологическая эффективность этого излучения по различным биологическим показателям составляет 0,6 - 1,0.

* (Протоны с такой энергией получены па синхроциклотроне Объединенного института ядерных исследований в Дубне.)

Применение средств химической защиты в этом случае оказалось приблизительно столь же эффективным, как и при облучении соответствующей дозой рентгеновских или гамма-лучей. Значительно ослабляют эффект протонного облучения цистеин, цистеамин, цистамин, АЭТ, понижение кислорода во вдыхаемом воздухе (гипоксия) и т. п.

При уменьшении энергии потока протонов возрастают линейные потери энергии и относительная биологическая эффективность. По существу то же наблюдается и при облучении нейтронами, альфа-частицами и более тяжелыми ядрами. Частицы, обладающие большой линейной плотностью ионизации и относительной биологической эффективностью 10 - 20, вызывают внутри облученной клетки значительно более грубые и серьезные повреждения, чем кванты электромагнитного излучения. На долю ядра, хромосом, отдельных молекул нуклеиновых кислот и белков приходится относительно гораздо больше ионизации и соответствующие повреждения бывают грубыми и значительно хуже поддаются восстановлению. Например, под влиянием плотно ионизирующих излучений гораздо больше случаев не восстанавливающихся разрывов обеих нитей в молекуле ДНК, чем при попадании гамма-квантов; соответственно выше доля необратимого поражения.

Наконец, особенность биологического эффекта плотно ионизирующих излучений - снижение доли поражения, зависящей от кислородного эффекта. Кислород препятствует взаимной нейтрализации (рекомбинации) возникших в результате облучения радикалов органических соединений и воды, способствует возникновению более долгоживущих радикалов и перекисей, что при гамма-рентгеновском облучении примерно втрое увеличивает поражение. Если в пределах одной молекулы биополимера возникает не одна, а несколько ионизации (это возможно лишь при действии плотноионизирующих излучений), сразу возникают грубые поломки, разрывы, и присутствие кислорода особого значения уже не имеет.

Так как действие радиозащитных препаратов направлено преимущественно против зависимой от кислорода части поражения, в условиях облучения организма потоками альфа-частиц, нейтронов, а также протонов относительно низких энергий, эффективность тиоловых препаратов (цистамина, цистеина, АЭТ и т. п.) оказыается значительно пониженной, а гипоксия, нитрит натрия, адреналин, серотонин либо совсем не дают эффекта, либо он незначителен. Очевидно, хорошо изученные, ставшие традиционными средства химической защиты мало применимы при лучевых поражениях, вызванных быстрыми нейтронами, альфа-частицами и т. п. Это подчеркивает необходимость активных поисков новых средств химической защиты, изыскания и изучения новых механизмов противолучевого эффекта, так как только в этом случае можно рассчитывать на положительный эффект при попытках вмешательства в течение лучевого поражения.

предыдущая главасодержаниеследующая глава








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь