НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

предыдущая главасодержаниеследующая глава

Покорение космоса и лучевая опасность

Необъятные просторы космоса таят лучевую опасность не только для крохотных частиц земной жизни. "Земля - колыбель человечества, но нельзя вечно жить в колыбели", - эти слова К. Э. Циолковского оказались пророческими. Мы живем в такое время, когда человечество начинает покидать свою земную колыбель.

Дети Земли, люди, как и все живое, приспособлены к жизни в земных условиях. За пределами плотных слоев земной атмосферы их ожидают совершенно непривычные, несовместимые с жизнью, экстремальные условия: космический холод и мрак, отсутствие кислорода и атмосферы вообще, повышенная гравитация при взлете и посадке и невесомость все остальное время полета. Чтобы выжить в этих условиях, космонавты захватывают с собой частицу родной земной колыбели - космический корабль, защищающий их и от холода, и от вакуума, и от других опасностей. Немалое значение имеют наземная тренировка, тренировочные полеты и т. п.

Радиация - космические лучи, протоны солнечных вспышек, радиационные пояса земли - одно из наиболее труднопреодолимых препятствий на пути освоения космоса. Конечно, герметическая оболочка космического корабля, оберегающая его обитателей от космических температур и вакуума, в какой-то мере защищает и от радиации. Смертоносное ультрафиолетовое и рентгеновское излучение Солнца полностью поглощается оболочкой корабля. Несколько иначе обстоит дело с корпускулярными потоками. Наиболее высокоэнергичные из них, и прежде всего более тяжелые частицы космических лучей, свободно пронизывают оболочку корабля, расходуя при этом лишь часть своей энергии и несколько замедляясь.

Однако действие их на находящихся внутри корабля космонавтов при этом не слабеет, а может даже несколько усиливаться. Замедление тяжелых частиц приводит к увеличению линейных потерь энергии и, следовательно, к увеличению биологического эффекта.

Попытаемся сопоставить и оценить размер возможной опасности для здоровья космонавтов трех основных источников радиации в заатмосферном пространстве.

Проще всего обстоит дело с радиационными поясами Земли, поскольку космические корабли будущего, направляющиеся к Луне, Марсу, Венере, будут преодолевать их в течение нескольких минут, или десятков минут, при взлете и посадке. Наиболее реальную опасность представляют протоны внутреннего радиационного пояса. С учетом того обстоятельства, что протонное излучение при одинаковой ионизирующей способности может вызывать более значительный биологический эффект (ОБЭ - относительная биологическая эффективность - больше 1), доза радиации в отсутствие защиты может достигать в области внутреннего радиационного пояса 190 - 200 бэр/час (бэр - биологический эквивалент рентгена). В условиях защиты оболочкой корабля доза может достигать 10 - 50 бэр/час. Это означает, что более 2 - 3 часов в области максимума внутреннего радиационного пояса космический корабль задерживаться не должен. По-видимому, в реальных условиях космические корабли преодолевают и будут преодолевать эту область за значительно более короткий срок.

Что касается электронов внутреннего и внешнего радиационных поясов, то преодолеть оболочку космического корабля они не в состоянии. Зато при их ударе об оболочку и торможении возникает так называемое тормозное гамма-излучение, обладающее высокой проникающей способностью. Вклад этого тормозного излучения в суммарную дозу радиации при прохождении радиационных поясов не превышает, по-видимому, 10%.

В целом можно утверждать, что опасность, создаваемая радиационными поясами Земли, не является непреодолимой и может быть сведена к минимуму с помощью сравнительно несложных мероприятий. Наиболее эффективное из них состоит в том, что космический корабль будет быстро проходить опасную зону; возможны и траектории космических полетов, направленные в обход поясов, через высокоширотные, приполярные области. Конструкция оболочки корабля может быть построена с учетом требований радиационной безопасности, что в то же время не противоречит и общим задачам. По-видимому, наиболее эффективна слоистая защита, включающая металлическую оболочку и слой полиэтилена.

Одним словом, современная наука и техника располагают достаточными средствами для преодоления опасности, создаваемой радиационными поясами Земли. Тем не менее их существование необходимо учитывать при создании более или менее длительно существующих обитаемых космических станций. Сейчас уже ясно, что создавать их на высоте 1000 км над поверхностью Земли, как предполагал К. Э. Циолковский, нельзя. Очевидно, их придется располагать на высотах до 500 км или выше 10 - 15 тыс. км.

Гораздо более серьезную проблему составляет существование первичного космического излучения. Оболочка корабля, как уже сказано, не является препятствием для наиболее жесткой части этого излучения - тяжелых частиц. При определенных условиях она даже способствует увеличению биологической эффективности этих лучей (несколько замедляя частицы и увеличивая удельную плотность производимой ими ионизации). На этом основании приходится сделать вывод, что физическая защита от действия первичного космического излучения неэффективна.

Но нужна ли эта защита? Быть может, интенсивность космических лучей столь невелика, что их действием можно пренебречь? Как теперь установлено, это, к сожалению, не так. Доза радиации, которую космонавты будут получать за счет космического излучения за пределами атмосферы, примерно в два-три раза выше допустимой дозы облучения в земных условиях, при работе с источниками излучения и радиоактивными изотопами. Но благодаря высокой биологической эффективности наиболее тяжелой части космических лучей их воздействие на организм космонавта будет еще несколько сильнее. И все же превышение допустимой дозы радиации в случае первичных космических лучей галактического происхождения не настолько велико, чтобы ограничить возможность космических полетов на Луну, а также к Венере и Марсу. Согласно расчетам ученых, при полетах вокруг Луны и обратно космонавты получают суммарную дозу около 0,5 р, т. е., примерно столько же, сколько при производстве простейшего рентгеновского исследования - рентгеноскопии. Лишь при более длительных полетах, продолжающихся многие месяцы и годы, постоянное воздействие космической радиации может оказать более или менее серьезное воздействие. Очевидно, для таких полетов следует продумать и эффективные меры защиты, в том числе и химической, поскольку физическая, как уже сказано, неэффективна.

Наибольшую опасность для здоровья и даже жизни космонавтов при полетах в околоземном пространстве представляет корпускулярное излучение солнечных хромосферных вспышек. При особенно мощных солнечных вспышках потоки протонов бывают настолько плотными, что доза радиации за пределами атмосферы и в условиях отсутствия защиты достигает тысяч рентгенов в час, т. е. превышает абсолютно смертельную для человека дозу. Правда, оболочка корабля поглощает значительную часть быстрых частиц и ослабляет энергию других, но взамен возникает тормозное рентгеновское и гамма-излучение, так что доза радиации внутри корабля все же может оказаться очень высокой. Кроме того, многое зависит и от масштабов вспышки. При особо мощных вспышках возникают наиболее высокоэнергичные частицы, способные преодолевать оболочку корабля, что, естественно, увеличивает их опасность для космонавтов.

Каковы же меры борьбы с лучевой опасностью в космосе? Преодолима ли она? Не ограничивает ли она дальность полетов в космосе и время пребывания в нем людей?

Меры борьбы различны, поскольку существуют различные виды радиационной опасности. Что касается радиационных поясов Земли, то их преодоление не составляет очень больших трудностей. Оболочка космического корабля существенно ослабляет их потенциальную опасность. Время пребывания космического корабля в пределах наиболее опасного внутреннего радиационного пояса весьма ограничено, и доза радиации, получаемая при его прохождении, мало отличается от допустимой. Но ее можно избежать, если рассчитать трассу полета таким образом, чтобы корабль покидал плотные слои атмосферы в высоких широтах, в районе расположенного над геомагнитным полюсом окна в радиационных поясах Земли. Стационарные же космические станции, очевидно, следует располагать вне пределов радиационных поясов, т. е. ниже 400 - 500 км или выше 10 - 20 тыс. км над земной поверхностью.

Наилучшим способом защиты от излучения солнечных вспышек явилось бы совершение космических полетов в период между вспышками. Реализация этой возможности упирается в эффективность и надежность прогнозирования вспышек. Наиболее безопасны в этом смысле годы спокойного Солнца, когда число пятен на его поверхности минимально, а вспышки редки. Таковы будут 1971 - 1975 гг., но и в годы высокой солнечной активности космические полеты могут и должны продолжаться.

Астрономическая служба Солнца СССР, США и некоторых других стран, осуществляющая постоянное за ним наблюдение, позволила изучить некоторые закономерности возникновения вспышек и тем самым с известной степенью надежности предсказывать место и время их возникновения. А это, разумеется, облегчает задачу планирования и обеспечения безопасности полетов. Надо иметь в виду, что не всякая вспышка опасна: от места ее возникновения на солнечном диске зависит направление корпускулярных потоков, и лишь при определенных локализациях вспышек эти потоки направляются в сторону земной орбиты.

Наконец, и при самых неблагоприятных условиях в распоряжении космонавтов будет минимум несколько часов от момента возникновения и регистрации вспышки до момента, когда потоки протонов достигнут корабля. За эти часы космонавты могут успеть посадить корабль на Землю, укрыть его в тени Луны либо принять другие меры защиты.

На случай, если все эти мероприятия окажутся недостаточными, в конструкции корабля заранее предусматриваются способы физической защиты. Первая линия обороны при всех условиях - это оболочка космического корабля, во много раз ослабляющая мощность потока солнечных корпускул и его опасность для космонавтов. Сложное внутреннее оборудование корабля, многочисленные приборы, панели, кресла и т. п. конструируются и компонуются так, чтобы максимально оградить космонавта, его наиболее чувствительные органы от губительного излучения. Это - своеобразная вторая линия обороны. Наконец, в кораблях, предназначенных для полетов к Луне и другим планетам, будут создаваться специальные миниатюрные радиационные убежища, где космонавты смогут переждать опасные часы, предоставив управление кораблем автоматике, а специальные приборы известят их, когда опасность снизится до минимума. Такова третья линия обороны от лучевой опасности, также имеющая чисто физическую природу.

Оборона, таким образом, строится надежная. И все же потребность в дополнительной защите есть. Она удовлетворяется с помощью химических и биологических противолучевых средств, применение которых совершенно необходимо для защиты от первичного космического излучения при дальних полетах (ввиду неэффективности физической защиты), от тормозного излучения и частично от протонных потоков.

Химическая защита в этих условиях неизбежно приобретает ряд особенностей, связанных с длительным непрерывным действием сравнительно малых доз радиации, с неравномерным облучением тела космонавта, так как разные его области в различной степени экранированы. Кроме того, при разработке средств химической защиты приходится учитывать, что на организм космонавта действуют и другие факторы космического полета: повышенная гравитация при взлете и посадке, невесомость, шум и вибрация, психологические факторы и т. п. Необходимо, чтобы средства химической защиты, ослабляя действие радиации, в то же время хотя бы не усиливали вредного действия других факторов полета. Все это достаточно усложняет задачу.

И тем не менее многочисленные эксперименты, поставленные в земных лабораториях и при полетах экспериментальных животных, убеждают, что задача эта разрешима и что в арсенале средств защиты космонавта от действия радиации будут состоять и радиозащитные препараты. Это и хорошо известные нам уже серу-содержащие вещества - цистамин, АЭТ и другие - и аминосоединения типа серотонина, 5-метокситриптамина, способные повысить устойчивость организма на период опасности при солнечных вспышках. Это вещества, вызывающие длительное повышение радиационной устойчивости (комплексы витаминов и т. п.). Ученые нашей страны и за рубежом ведут большую работу в этой области. К сожалению, пока ее результаты нельзя признать удовлетворительными.

Все сказанное до сих пор относилось к космическим полетам в пределах Солнечной системы, в основном к ближайшим планетам. Но ведь человечество не остановится и на этом. Правда, еще не созданы двигатели, способные придать кораблю скорость, близкую к световой (а это необходимо для полета к другим звездным системам), не разработаны и соответствующие конструкции кораблей. Но в наш век разрыв между самой необузданной фантазией и реальностью невелик и все сокращается. Попробуем же заглянуть в завтра.

Как отразятся на человеке околосветовые скорости полета и какова будет в этом случае лучевая опасность? Что касается скорости, то сама по себе она не окажет существенного влияния: на человека воздействует не скорость, как таковая, а ускорения; в корабле, завершившем разгон, люди не будут испытывать неудобств, связанных со скоростью. Что же касается ускорений, то для их преодоления весьма важны предварительный отбор и тренировка космонавтов, совершенствование конструкции кресел, костюмов, в частности, применение гидравлических капсул-кресел, о которых писал еще К. Э. Циолковский.

А как же радиация? В корабле, летящем с субсветовой скоростью, создадутся совершенно особые условия. Космическое пространство, при всей его пустоте, содержит от одной до десяти частиц в каждом кубическом метре. При столкновении с космическим кораблем каждая такая частица будет вести себя так, как будто это она летит с околосветовой скоростью. Самая мощная оболочка не будет достаточным препятствием для потока встречных частиц, пронизывающих корабль насквозь. Ничто живое не сможет существовать в таких условиях.

Значит ли это, что межзвездные полеты принципиально невозможны? Будем осторожны с прогнозами. История науки знает немало примеров того, как самые, казалось бы, бесспорные предвидения опрокидывались прогрессом науки и техники. Возможно, межзвездные и галактические корабли будущего будут вооружены сверхмощным магнитным полем, отклоняющим в стороны поток встречных частиц; быть может, полезным в этом отношении окажется лазерный луч. Да и наука не стоит на месте. Пройдет десяток лет, и космонавтика - одна из самых молодых и перспективных отраслей человеческой деятельности, шагнет так далеко вперед, что наши сегодняшние сомнения окажутся почти наверняка несерьезными, а трудности - преодолимыми.

И все же лучевая опасность остается одним из самых серьезных препятствий на пути освоения космического пространства, и чем дольше человек будет находиться вне Земли, тем важнее будет защитить его от радиационной угрозы.

предыдущая главасодержаниеследующая глава








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь