НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

предыдущая главасодержаниеследующая глава

Беседа четвертая. Оракулы природы

Вопрос о предсказании погоды почти так же стар, как и само человечество. Потребность в какой-то мере предвидеть погоду появилась у человека с переходом его к оседлой жизни, к занятию земледелием и скотоводством. Засухи и наводнения, опустошительные бури и морские штормы приносили немалые беды человечеству. Нужно было научиться вовремя узнавать о ненастье и предвидеть погоду, благоприятствующую работе.

В результате длительных наблюдений люди установили еще задолго до нашей эры ряд эмпирических связей качественного характера между отдельными атмосферными явлениями. Появилось много примет о погоде, вылившихся в форму кратких правил, нередко для лучшего запоминания рифмованных. Так, на одной из глиняных дощечек, дошедших до нас из Вавилонии, можно прочесть: "Когда солнце окружено кругом, то выпадет дождь". У греков были даже особые календари, высеченные на каменных дощечках, указывающие средний характер погоды для каждого дня года. Появились они, вероятно, 25 веков назад в результате многолетних наблюдений отдельных ученых. Эти календари-отметчики (так называемые парапегмы) прикреплялись к колоннам на рынках, площадях и в других общественных местах приморских городов. Парапегмы пользовались большим доверием мореплавателей и сельских жителей, в соответствии с ними люди выходили на рыбную ловлю, шли на охоту, торговые суда отправлялись в дальнее плаванье, производились сельскохозяйственные работы.

Теперь о парапетах мало кто знает, они давным-давно стали достоянием музеев. Забылись многие накопленные народами в течение веков приметы погоды, основанные на наблюдениях природы. Прогнозирование погоды ныне ведется на прочной научной основе. О том, что приготовила нам природа на завтра и ближайшие дни, мы обычно узнаем вечером, сидя у радиоприемника или телевизора, когда диктор объявляет: "Передаем сводку погоды..." А тот, кому не довелось по каким-то причинам прослушать это сообщение, находит его утром в газетах перед уходом на работу.

Пожалуй, нет сейчас человека, которого не интересовало бы состояние погоды. "Потребителями" прогнозов погоды в наше время являются сотни миллионов людей самых различных профессий и специальностей: полеводы, садоводы, пчеловоды, агрономы, овощеводы, геологи, летчики, космонавты, моряки, лесозаготовители, строители, спортсмены, тысячи и тысячи любителей туризма, охоты и рыбной ловли. Прогнозы погоды прочно вошли в жизнь каждого горожанина, каждого сельского жителя. Мы привыкли и любим жить "по науке".

Однако не будем греха таить, бывает и так. Вы собрались в воскресенье отдохнуть на лоне природы. Вечером в субботу диктор сообщает, что завтра ожидается теплая погода, правда, с ветром, но без осадков. А на самом деле прогноз оказывается абсолютно неверным. Английский метеоролог Рубин даже подсчитал, что из 445 прогнозов погоды, сделанных в течение б месяцев, лишь 127 оказались правильными. Один из американских журналов совсем недавно опубликовал на своих страницах следующее интервью с жительницей Сан-Франциско Бетти Грэхем. На вопрос репортера, что она больше всего любит в американском телевидении, Бетти Грэхем ответила: "Сводку погоды. Я держу с мужем пари на доллар, совпадет ли погода с прогнозами. Я всегда сомневаюсь и поэтому за последний месяц выиграла у мужа 27 долларов". И все же, как ни грустны данные Рубина и как ни удачлив "бизнес" Бетти Грэхем, подавляющая часть населения земного шара продолжает верить синоптикам, так как знает, что за последние 25 - 30 лет они многое сделали и продолжают делать для повышения точности прогнозирования погоды.

Вероятность правильного прогнозирования значительно, увеличилась за последние годы вследствие расширения наблюдательной сети, применения более совершенных современных приборов и аппаратов и, главное, за счет более глубокого использования количественных законов физики и механики при учете движения воздушных масс. Это последнее направление стало по-настоящему возможным только недавно, после появления электронных счетных машин. И дело тут не только в создании новой техники: некоторые элементы, влияющие на погоду, например распределение атмосферного давления и воздушных потоков, предсказывают ныне новыми методами значительно быстрее и точнее, чем это делалось ранее самыми опытными специалистами-практиками. Новую страницу в прогнозировании погоды открыли искусственные спутники Земли. Впервые в истории ученые получили возможность наблюдать за метеорологическими процессами во всем мире. Прежде всего это относится к изучению облаков. До сих пор метеорологи смотрели на них снизу. Теперь они могут наблюдать и фотографировать их сверху, из космоса. В этом случае оказывается возможным получить, более целостную картину распределения облачности над огромными территориями земной поверхности. А, как известно, характер и распределение облачности многое говорят метеорологам о движении воздушных масс, об образовании циклонов, антициклонов, штормов, а также о других атмосферных явлениях. Так, например, в зарубежной печати было опубликовано сообщение, что по фотоснимкам облаков, переданным со спутника, удалось обнаружить сильный ураган в Тихом океане за два дня до того, как синоптики "нашли" его по данным наземных наблюдений.

Почему же все-таки, несмотря на достигнутые в последнее время метеорологической наукой успехи, прогнозы погоды иногда оказываются неточными? Одним из главных источников ошибок в данном случае служит отсутствие полных метеорологических наблюдений во всей толще атмосферы и в труднодоступных районах. Вторая группа ошибок в предсказаниях возникает вследствие недостаточности наших знаний о причинах и последовательности ряда атмосферных явлений, неуловимости некоторых факторов, способных повлиять на погоду, причудливо изменяющих ее. Можно привести такой пример. Между двумя станциями наблюдения возник маленький вихрь, и он не был обнаружен. Да и сам по себе он не влиял на погоду в данный момент. Однако в дальнейшем, при развитии процесса, он стал той "затравкой", на которой возникло крупномасштабное возмущение, изменившее погоду. И хотя такого рода ситуации нельзя считать правилом (скорее они являются исключением), но именно они и приводят к ошибкам в прогнозах. И еще одно обстоятельство. Некоторая часть ошибок в предсказаниях неизбежно связана с самим методом составления прогнозов погоды. Дело в том, что современный метод предсказания погоды по синоптическим картам неточен по самой своей природе, хотя основы его вполне научны. Его трудно сравнить, например, с чрезвычайно точным методом астрономических предсказаний. Астрономы задолго и с любой точностью скажут вам, когда будет затмение Солнца или Луны, каково будет положение других планет. Эти предсказания делаются на основе сложных математических расчетов, и ошибки здесь сведены до минимума. Совсем иными методами предсказывают погоду синоптики: их выводы основаны почти исключительно на качественной оценке явлений и процессов. Синоптики анализируют карту, определяют положение циклонов, антициклонов и фронтов, устанавливают приблизительно скорость их перемещения и в значительной степени субъективно решают, как будет изменяться в дальнейшем направление их движения, будет ли оно замедляться или ускоряться. Вполне естественно, что при таком методе, даже зная причины явлений и располагая множеством данных об элементах погоды, синоптики не могут предсказать погоду абсолютно точно, а должны ограничиваться лишь примерной оценкой ее в будущем. В конечном счете совокупность всех перечисленных причин приводит к тому, что синоптики невольно, не желая этого, нас подводят. А мы, слепо веря предсказаниям метеорологов, нет-нет, да и мокнем под дождем, таскаем зонт в солнечную, безоблачную погоду, часами, а то и сутками ожидаем в аэропортах летной погоды, испытываем на себе гнев неожиданно разбушевавшейся морской стихии, проклиная при этом свою доверчивость и несовершенство службы прогнозов. Публикуемые в разных странах данные о достигнутой точности в прогнозировании погоды весьма разноречивы. В среднем из 100 прогнозов 15, а то и 20 оказываются неверными, ошибочными. Именно они-то и служат поводом для язвительных насмешек и острот в адрес синоптиков: "Прочитай прогноз и рассчитывай на обратное". Что поделаешь, промокший человек злопамятен!

Однако, как ни сложна проблема точного прогнозирования погоды, мы не вправе сетовать на природу за то, что она столь неохотно раскрывает нам свои метеорологические тайны. Удивительно другое - как это человек, пользуясь с незапамятных времен в своей повседневной жизни созданными природой многочисленными живыми барометрами, термометрами, гигрометрами и другими "приборами", умеющими чутко реагировать на все происходящие в атмосфере изменения, до сих пор не удосужился понять их "конструкцию", принцип действия и не перенес весь этот богатейший арсенал "изобретений" в инструментальную метеорологию.

Пришла пора исправить создавшееся положение, говорят бионики, нужно досконально изучить атмосферные (физические) и биологические процессы на основе данных о взаимодействии живых организмов с окружающей средой и полученные сведения использовать для повышения точности прогнозирования погоды. И вот первый, весьма убедительный по эффективности результат этого нового направления в работе специалистов по бионике.

По данным мировой статистики, ежегодно в морях и океанах погибают тысячи людей. В большинстве своем это жертвы кораблекрушений, вызванных штормами и ураганами. Высота штормовых волн в океанах нередко достигает 4 - 11, а иногда даже 18 м. Скорость распространения штормовых волн доходит до 60 и более километров в час. На каждый погонный метр гребня волна высотой в 5 и длиной в 100 м несет в себе мощность, равную 3120 квт. При таком волнении на площади в 1 км2 бурного моря в каждую секунду заключена мощность, равная 3 миллиардам киловатт. Этой чудовищной энергии не в силах противостоять ни один современный корабль, суда-громадины превращаются в груды искореженного металла, выбрасываются на скалы, поднимающиеся на 3 м выше уровня океана. В 1929 г. во время жестокого шторма, бушевавшего в Северной Атлантике и в Северном море, одновременно потерпело аварию более 600 судов, затонуло много кораблей грузоподъемностью от 6 до 11 тысяч тонн. Еще более трагичным был 1964 г. Он побил все прошлые "рекорды" морских катастроф. Превзойден был даже 1929 г., прозванный моряками "фатальным годом". Об этом свидетельствуют многочисленные статьи и заметки, опубликованные в иностранной, преимущественно западной прессе. В 1964 г. только в Атлантическом и Тихом океанах, Средиземном и Северном морях погибло (не считая судов, потерпевших аварию) более 200 судов общим водоизмещением 460 000 т. Добычей Нептуна стали сотни и тысячи людей. В печальном "соревновании" между государствами, флот которых понес наибольшие потери, зарубежные газеты отводят первое место Греции, второе - США. Последующие места в трагической иерархии принадлежат Великобритании, Норвегии, Либерии, Японии, Италии и другим государствам.

Остановить шторм или направить его по другому пути люди еще не умеют. Но обойти шторм стороной или заблаговременно укрыться в ближайшем порту, узнав о его приближении, можно. Но, к сожалению, обычный морской барометр "чувствует" шторм лишь за два часа. Этого, конечно, мало даже для современного быстроходного лайнера. В более выгодном положении находятся многие морские птицы и животные. Они, как это давно заметили рыбаки и жители морских побережий, способны заблаговременно "угадывать" приближение шторма. Так, например, задолго до наступления ненастья, когда барометр стоит еще достаточно высоко и нет никаких внешних признаков, говорящих о скором ухудшении погоды, дельфины заплывают за скалы, киты уходят далеко в открытое море, а мелкие ракообразные, известные под названием "морские блохи", которые в хорошую погоду прыгают по гальке у самого уреза воды, перед приближением шторма выходят на берег; Ухудшение погоды, приближение шторма хорошо чувствуют акулы, чайки, а также пингвины, последние ложатся на снег и вытягивают свои клювы в направлении, в котором должна прийти буря или метель.

Что же это за "шестое чувство"? Какова связь между физическими процессами, происходящими в атмосфере и в толще морских глубин, и физиологическим восприятием живых организмов? Ведь человеку, чтобы предсказать изменение погоды, приближение шторма, надо получить сведения о метеорологических условиях на обширной территории* и по этой информации составить синоптическую карту, без анализа которой метеоролог не может предсказать изменение погоды. Что же служит "синоптической картой" для морских птиц, рыб и других морских организмов? Какие "приборы" и "приспособления" заблаговременно и абсолютно точно предупреждают их о приближении шторма или бури? Какие огромные перспективы повышения точности прогнозирования погоды открылись бы перед метеорологами, если бы бионикам удалось проникнуть в эту тайну!

* (Только у нас в СССР служба погоды получает информацию с 4000 метеостанций и 7500 постов. В 6000 пунктов ведутся гидрологические наблюдения, 210 станций зондируют атмосферу радиоволнами. У этой службы есть свои корабли погоды, к тому же она собирает информацию с 1000 неспециализированных судов, использует метеоракеты и спутник "Космос-122". Широко используется авиация: съемки снега с самолетов, наблюдение за льдами и т. д.)

Из многочисленных животных, обладающих неизвестными нам механизмам для прогнозирования погоды, бионики в качестве первого подопытного объекта избрали... медузу, которая, по многолетним наблюдениям, задолго до приближения шторма спешит укрыться в безопасные места литоральной зоны.

Как же такое простое животное, как медуза, узнает за много часов о приближении шторма? Оказывается, у медузы имеется инфраухо, оно позволяет ей улавливать недоступные слуху человека инфразвуковые колебания (частотой 8 - 13 гц), которые хорошо распространяются в воде и появляются на 10 - 15 час раньше шторма. Инфраухо медузы - это стебелек, оканчивающийся слуховой колбой - шаром с жидкостью, в которой плавают камешки, соприкасающиеся с нервным окончаниями. Первой воспринимает инфразвуковые колебания слуховая колба, наполненная жидкостью, затем эти колебания через камешки в пузырьке передаются нервам. Используя принцип действия "уха" медузы, сотрудники кафедры биофизики Московского государственного университета им. М. В. Ломоносова создали электронный аппарат - автоматический предсказатель бурь.

Рис. 1. Блок-схема прибора для предсказания штормов (искусственное 'ухо медузы')
Рис. 1. Блок-схема прибора для предсказания штормов (искусственное 'ухо медузы')

Аппарат, имитирующий орган слуха медузы (рис. 1), состоит из рупора, улавливающего колебания воздуха частотой около 10 гц, резонатора, пропускающего именно эти частоты и отсеивающего случайные, пьезодатчика, превращающего пойманные сигналы в импульсы электрического тока, усилителя и измерительного прибора. Аппарат устанавливается на палубе корабля. Когда он включен, рупор медленно вращается, выискивая вокруг штормовые инфразвуки. При обнаружении их рупором особое устройство, действующее по принципу обратной связи, тотчас же останавливает движение рупора, указывая, откуда надвигается шторм. На капитанском мостике находится измерительный прибор и система указателей, оповещающая о наступлении шторма световым или звуковым сигналом.

Испытания показали, что описанный сигнализатор бурь позволяет определять наступление шторма за 15 час.

Более того, он указывает даже мощность надвигающегося шторма.

Многое сулит инструментальной метеорологии проводимое биониками изучение барометрических устройств, которыми обладают некоторые рыбы. Так, например, отшельник дна на глубине - сом перед грозой и ненастьем обязательно всплывает, пугая верховодок. Рыба голец в ясную погоду лежит на дне аквариума без движения, напоминая экспонат зоологического музея. Но вот голец начинает подавать признаки жизни. Виляя длинным телом, он снует вдоль стенок аквариума..., а через некоторое время небо затягивается облаками. А когда голец мечется по аквариуму вверх - вниз, вправо - влево и кажется, что целый клубок темных длинных тел заполнил банку, это значит, что скоро в окно забарабанят капли дождя. Такими живыми барометрами пользуются крестьяне в некоторых районах Китая. Надо сказать, что "предсказания" гольца более точны, чем прогнозы синоптиков: он ошибается только в 3 - 4 случаях из 100! Большой восприимчивостью к изменениям барометрического давления отличается и вьюн. Перед ненастьем эта рыба выходит на поверхность воды, она предугадывает изменение погоды за сутки. Наконец, идеальными барометрами служат красивые мелкие рыбки, обитающие в глубинах подводного царства у берегов Японии. Они заранее и совершенно безошибочно реагируют на малейшие изменения погоды, и за их поведением в аквариуме пристально следят капитаны белоснежных океанских лайнеров, отправляющихся в дальние рейсы, рыбаки и сельские жители прибрежных районов Страны Восходящего Солнца, чьи сады и посевы нередко страдают от штормов.

В чем же секрет умения маленьких обитателей аквариумов столь точно прогнозировать погоду? Как установили ученые, он заключается в оригинальном устройстве плавательного пузыря. Обычно этот орган выполняет у рыб функции гидростатического регулятора, помогая им удерживаться на той или иной глубине. У японских же рыбок плавательный пузырь выполняет еще одну исключительно важную функцию: он является высокочувствительным прибором, воспринимающим тончайшие перепады давления, измеряемые миллионными долями исходного. Не говоря уже о том, что эта чувствительность находится на пределе возможностей технических систем, очень ценно и другое - такой живой барометр чрезвычайно чувствителен к медленным колебаниям давления. Именно это и делает японских рыбок непревзойденными синоптиками, верными помощниками человека.

Чутко реагируют на предстоящие изменения погоды черви и медицинские пиявки. В хорошую погоду медицинские пиявки спокойны и, как правило, лежат на дне стеклянной банки или аквариума. Перед дождем пиявки начинают присасываться к стенкам банки и немного высовываться из воды. А перед грозой и сильным ветром они ведут себя крайне неспокойно: быстро плавают, извиваются, пытаются вылезти из воды и присосаться к стенкам сосуда выше уровня воды. Когда дождевые черви выползают на поверхность, это значит, что ясная сухая погода перейдет в неустойчивую с дождями и грозами.

Значительный интерес представляют для биоников раки и лягушки. Они несут "службу погоды" на берегу. Перед дождем раки выползают из воды на берег. Существует целый набор народных примет, связывающих поведение лягушек с переменой погоды. В сухую погоду они остаются в воде, в сырую - выходят на сушу. Лягушки по суше прыгают - к дождю. Лягушки расквакались - к непогоде. Лягушки квакают вечером с приятной трелью - к ясной погоде. Лягушки с вечера долго кричат - к хорошей погоде. Если же лягушки держатся на поверхности воды и квакают, выставляя мордочки наружу, - к ненастью. Лягушки турчат - на дождь, громко кричат - к вёдру, молчат - перед холодной погодой. У лягушки кожа серого цвета - к дождю; если кожа желтая, в ближайшее время установится вёдро. Зашумит река и закричит лягушка - будет дождь.

Чудесными синоптиками являются многие птицы. Постоянно находясь в атмосфере, непосредственно испытывая на себе воздействие всех происходящих в воздушном океане изменений, птицы в 'течение веков приобрели высокую чувствительность к изменению атмосферного давления, к уменьшению освещенности (тонкие прозрачные облака, ослабляющие солнечный свет, - предвестники ненастья), к скоплению в атмосфере электричества перед грозой и т. д. И что особенно важно - птицы реагируют на все метеорологические

изменения заранее. Это находит отражение в их пении, криках, поведении и ежегодных сроках прилета. Наверное, каждый из вас слышал зяблика. Залихватским посвистом серебряного голоска только один певец - зяблик мастак поставить восклицательный знак - заключительный аккорд нежно-звучной, красивой и радостной своей песенки: "пиньк... пиньк... фить-фить-фить-фить... ля-ля-ля...". В другой раз услышите - и не узнаете: что случилось с зябликом? Совсем по-другому, без раската, тихо, монотонно цедит он: "рю-пинь-пинь-рю..." Птицеловы говорят: "Зяблик рюмит - к дождю". И это верно. Зяблик не обманывает. Иволга в солнечный день издает округлые звуки "фиу-лиу", напоминающие чистую мелодию флейты; перед ухудшением погоды крик иволги похож на кошачий визг. Жаворонки много и долго поют - сохранится ясная погода без осадков. Регулярное кукование кукушек указывает на установление теплой погоды и прекращение холодных утренников. Истошный крик в ясную погоду домоседов галок и ворон - верный признак дождя летом и осенью и снегопада зимой. Низко реют ласточки - к непогоде, высоко взвиваются - к вёдру. Воробьи собираются стаями на земле, купаются в пыли или в песке - к дождю. На дождь указывают и беспрерывно ныряющие, плещущиеся в воде утки. В пасмурное или туманное утро ток глухарей начинается и кончается позднее, чем обычно. Если хорошая погода через несколько дней должна смениться ненастной, то глухаря не услышишь. При токовании глухарей в ненастное утро можно быть уверенным в улучшении погоды. Белая трясогузка - признанный предвестник ледохода - всегда прилетает в канун вскрытия рек. Появление же стаек белых трясогузок в сухую осень предвещает наступление ненастной и дождливой погоды. Ранний отлет соек, синиц, сорок, ронж, свиристелей и других птиц в предосеннее время, как правило, предшествует похолоданию и изменению погоды.

Остро чувствуют атмосферные изменения и насекомые. "Паук, - писал Л. Н. Толстой, - делает паутину по погоде, какая есть и какая будет. Глядя на паутину, можно узнать, какая будет погода; если паук сидит, забившись в средине паутины, и не выходит - это к дождю. Если он выходит из гнезда и делает новые паутины, то это к погоде.

Как может паук знать вперед, какая будет погода? Чувства у паука так тонки, что когда в воздухе начинает только собираться сырость, и мы этой сырости не слышим, и для нас погода еще ясная, -для паука уже идет дождь".

О приближении дождя заблаговременно сигнализируют человеку муравьи и пчелы. Первые старательно закрывают входы в муравейник, вторые сидят в ульях и гудят. Мухи и осы перед ненастьем стремятся залететь в помещения или в кабины автомобилей. Хорошо "предчувствуют" грозу бабочки-крапивницы. Если в ясную погоду они ищут укрытия в защищенных от ветра местах, в пучках сухих веток, дуплах деревьев, то это значит, что через несколько часов можно ожидать грозы. Зато, если поздно вечером сильно трещат кузнечики, наутро наступит хороший день. Вьющиеся в воздухе столбом комары и мошки обычно тоже предвещают хорошую, ясную погоду. Некоторые насекомые позволяют нам предугадывать погоду и на более длительный срок. Чем выше к осени муравьиные кучи, тем суровее будет зима. На холодную зиму пчелы залепляют леток, оставляя в нем еле заметное отверстие, а к теплой зиме он остается открытым.

Недавно два голландских зоолога, работающих в Лейденском университете, произвели исследование органов чувств мокрицы, которой, как известно, жизненно необходима высокая влажность окружающей ее среды. В результате этих исследований было установлено, что на теле каждой мокрицы имеется около сотни чувствительных "гигрометров", тонко реагирующих на изменения влажности атмосферы. Эти органы "чувства влажности" у мокрицы устроены весьма оригинально: они представляют собой крошечные бугорки, покрытые тонкой кожицей, к которой изнутри близко подходят группы нервных окончаний. Кожица, покрывающая "гигрометры", достаточно надежно защищает их от воды и в то же время обеспечивает доступ воздуха к нервным окончаниям. Аналогичные органы чувств, регистрирующие изменение атмосферной влажности, обнаружены учеными и у некоторых видов жуков.

Рассказывают, что однажды в ясный, солнечный день Исаак Ньютон вышел на прогулку и встретил пастуха. Пастух посоветовал ученому вернуться домой, если он не желает попасть под дождь. Ньютон не послушался. Но уже через полчаса он промок, как говорят, до нитки. Удивленный столь верным предсказанием, Ньютон пожелал выяснить, на основании каких данных пастух узнал о предстоящем ливне. Тот ответил, что ему помог... баран, по шерсти которого он определил приближение дождя...

Мы привели этот случай для того, чтобы далее на ряде других примеров показать небезынтересные, имеющие, как нам думается, научно-познавательное значение приметы, сигнализирующие человеку о возможных изменениях погоды. Эти народные приметы, собранные в течение многих веков путем повседневных наблюдений за поведением домашних животных, гласят:

Скот ложится под кровлю - к ненастью, а на двор - к вёдру.

Осел ревет - к ветру.

Овцы стукаются лбами - к сильному ветру.

Свинья чешется - к теплу, визжит - к ненастью, солому таскает - к буре.

Лошадь храпит - к ненастью, трясет головой и закидывает ее кверху - к ненастью.

Собака валяется - к ненастью, траву ест - к дождю, мало ест и много спит - к дождю.

Кошка моется, лижет лапу - к вёдру, морду хоронит - к морозу либо к ненастью, в печурку садится - к морозу, скребет пол - к ветру и метели, стену дерет - к непогоде, крепко спит - к теплу, лежит брюхом вверх - к теплу.

Гусь прячет под крыло нос - к холоду. Гуси хлопают крыльями - к холоду, полощутся - к теплу. Гусь и утка ныряют - на дождь. Утки кричат и плещутся - на дождь.

Куры кудахчут - к ненастью. Наседка сажает цыплят под себя - к ненастью. Если куры не прячутся от дождя, то он будет непродолжителен.

А способен ли наш организм воспринимать биометеорологическую информацию? Еще в глубокой древности люди заметили связь между заболеваниями и погодой. Народы, населявшие Элладу, Египет и Рим, поклонялись лучезарному богу Солнца, полагая, что он посылает человеку исцеление.

Теперь мы знаем, что в силу экологических особенностей здоровый человек в меньшей мере, нежели животные, реагирует на ближайшие изменения погоды. Но отдельные особи, чаще всего так называемые "метеотропные больные", очень подвержены влиянию метеорологических факторов. Их организм плохо приспосабливается к колебаниям атмосферного давления, влажности воздуха, температуры. Хорошо известны, например, боли в суставах у людей, страдающих ревматизмом, накануне изменения погоды. Некоторые ревматики даже чувствуют "голос моря". А чем объяснить, что в иные дни количество сердечных приступов резко увеличивается? На этот вопрос ответили сотрудники Сектора географической медицины Института географии Сибири и Дальнего Востока при Сибирском отделении АН СССР в Иркутске. Сотни специальных исследований, тысячи собранных данных говорят о связи между погодой и заболеваниями сердца. Так, когда на Иркутск надвигается антициклон, врачи поликлиник первые узнают о нем: резко увеличивается число больных, нуждающихся в срочной медицинской помощи. Статистика убедительно показывает, что с изменением погоды часто связаны обострения гипертонической болезни, инфаркты и инсульты, приступы астмы. Американские исследователи, например, установили, что приступы почечной колики достигают потолка в жаркое время года, когда организм человека сильно обезвоживается.

В чем же секрет? Ведь наше тело имеет постоянную, не зависящую от окружающей среды температуру. В реакции организма на колебания погоды в первую очередь принимает участие нервная система, а затем сосудистая, гормональная и кроветворная.

Влияние внешней среды на организм становится понятным, если познакомиться с опытами итальянского ученого Д. Пиккарди. Экспериментируя, Пиккарди все время держал искусственную протоплазму при постоянной температуре, влажности воздуха и освещении. Несмотря на это, протоплазма чутко реагировала на изменение магнитного поля Земли, ее электрического потенциала, на изменение солнечной активности и колебания барометрического давления. Коллоидные растворы мутнели, в них выпадали осадки, изменялся их цвет.

Наблюдения показывают, что в зависимости от влияния метеорологических факторов на величину статического электрического потенциала (СТЭП) кожи людей можно разделить на три группы: электромобильных, промежуточных и электростабильных. У электромобильных индивидов наблюдается хорошо выраженные изменения СТЭП при изменении метеорологических условий. Электростабильные индивиды характеризуются большей или меньшей независимостью величин СТЭП от метеорологических факторов. Большая часть людей относится к средней, промежуточной группе. Как показали опыты, наибольшая величина СТЭП у представителей первой группы достигает 800 мв, у средней - 400, а у электростабильной группы - 200 мв. При хорошей погоде изменения СТЭП у людей, относящихся к промежуточной и электростабильной группам, происходили с определенным, иногда индивидуальным ритмом. Так, наблюдалось повышение СТЭП кожи в 14 час по сравнению с утренними показателями и его падение к 20 - 21 час. У части же людей за 3 - 5 час до начала дождя или грозы отмечалось значительное повышение СТЭП кожи. Динамика этих изменений по своей внешней характеристике аналогична динамике болевых ощущений, вызываемых, например, заболеванием сердца: резкий скачок вверх с последующим менее резким снижением. Когда фронт дождя или грозы проходил, величины СТЭП снижались.

Все эти факты, а также ряд других позволяют предполагать, что наш организм обладает еще многими неизвестными нам возможностями восприятия метеорологической информации.

Чрезвычайно восприимчивы к барометрическому давлению, инсоляции, температуре воздуха, влажности атмосферы и почвы растения. Поведение целого ряда растений даже позволяет людям строить правильные долговременные прогнозы погоды. Так, благодаря наблюдательности человека установлено: если береза раньше ольхи листья выкинет, будет лето ведренное, а если ольха первая распустится, пиши пропало - холод и дожди замучают. Замечено, что, когда на дубе много желудей, следует ожидать лютой зимы. Появление среди снега на проталинах, на кручах и склонах, на железнодорожных откосах первых желтых цветов самого раннего весеннего растения, известного в народе под названием "мать-и-мачеха", - верный первоуказатель тепла в конце марта - в начале апреля. Если на лугах, на лесных полянах и среди кустов в первой половине апреля распускаются золотисто-желтые цветки первоцвета, баранчики (у нас и у многих народов Запада они называются ключиками), то нужно ждать первых теплых дней. Белые шапки медоносных цветов песнопевной рябины - точный предвестник перелома к надежному теплу. На установление теплой погоды указывает также весеннее сокодвижение у березы, клена и других деревьев. Появление на поверхности воды в прудах, реках, озерах широкого зеленого листа белой лилии, нашего северного лотоса, знаменует конец заморозков. Обильное выделение капель клейкой жидкости на широких пластинках листьев конского каштана обычно предвещает наступление длительного дождливого периода.

Народная агрономия, опираясь на многовековой опыт, учит не пропускать сроков "когда сеять, когда жать, когда скирды метать". При этом она пользуется многими приметами, связывающими сроки сева или посадки тех или иных культур с фенологическими явлениями. За основу взят живой календарь природы: начало цветения черемухи, время, когда лопаются почки дуба, и др. И выбор, надо сказать, сделан верно, так как эти индикаторы, как показала практика, весьма надежны. Появление подснежников, волосисто-мохнатой "травы-сон" (лиловые колокольчики) сигнализирует сельским механизаторам о начале весенней пахоты. Осереживание цветущих кленов указывает посевную пору свеклы. Цветение осины объявляет срок раннего сева моркови. Душистые цветы белой красавицы русского леса - черемухи - лучший указатель времени посадки картофеля. Некоторые земледельческие приметы даже стали аксиомами, твердыми правилами. Овес сей, когда березовый лист станет распускаться. Самый поздний сев овса - когда зацветут яблони. Земляника красна - не сей овса напрасно. Пшеницу сей, когда зацветет черемуха (примета ярославская). Не сей пшеницу прежде дубового листа. Сей ячмень, когда ржаной цвет чуть покажется. Рябина зацветет - пора сеять лен. Гречиху сей, когда трава хороша. Когда распускается дуб, надо сеять горох. В этих и других приметах, добытых практикой, немало полезного и для науки.

Десятки и сотни растений абсолютно точно вещают человеку о суточных изменениях погоды. Так, если обыкновенный папоротник с утра закручивает листья, будет теплый, солнечный день. Верный барометр - желтые цветки акации: перед дождем они раскрываются и выделяют много нектара (его аромат слышен за сотни метров). Точно предсказывают погоду нарядные деревца ленкоранской акации, или, как их еще называют, мимозы. Эти красивые деревца ночью и перед наступлением ненастья сворачивают свои листочки, словно боятся их замочить. Чувствительны к непогоде и их ярко-розовые, нежные цветы-пушинки.

Очень чувствительны к изменениям погоды цветки ноготков, мальвы, ипомеи. Это настоящие оракулы погоды. Небо еще чистое, голубое и бездонное, а эти цветы уже плотно сложили свои лепестки, словно увяли. Значит, быть скоро дождю. На приближение дождя указывают также закрытые с утра цветы небольшого сорного растения - мокричника. Перед пасмурной и дождливой погодой складываются листья у лугового клевера и повисают соцветия лесной крупки. Поникают перед ненастьем белые и лиловые цветы лугового сердечника. Точно также ведут себя цветочные венчики чистотела, растущего в тени среди сорняков. Исправно несет "службу погоды" с июня по сентябрь растущий в затененных ельниках цветок-синоптик, хорошо известный туристам под названием "заячья капуста". Если его цветки розового или красного цвета не свертываются, как обычно, а распускаются ночью, утром надо ждать дождя. Но если цветки заячьей капусты нормально закрываются на ночь, это верный признак хорошей погоды. И не случайно многие садоводы, огородники, цветоводы сажают заячью капусту в горшок и держат ее в квартире на тенистых окнах вместо барометра.

Таких растений-барометров в природе насчитывается около 400! Добавьте к этому сотни своеобразных растений - гигрометров, индикаторов температуры, флюгеров, компасов, сотни чудесных синоптиков - птиц, рыб, насекомых, мысленно войдите в этот мир живой метеорологии, и перед вами предстанут тысячи оригинальных, мастерски сработанных природой механизмов, в устройстве которых таятся широчайшие возможности познания процессов, происходящих в окружающей нас атмосфере. Проникнуть в сокровенные тайны синоптиков живой природы, смоделировать наиболее совершенные, испытанные и проверенные тысячелетиями живые метеорологические "приборы*, поставить их на службу прогнозирования погоды - такова одна из важнейших задач, которую поставили перед собою специалисты по бионике.

В недалеком будущем бионики надеются также внести свой вклад в решение такой задачи, как прогнозирование землетрясений.

"Каким образом?" - может спросить читатель. Об этом мы расскажем чуть позже. А пока кратко изложим современное состояние проблемы, ее актуальность, значимость и остроту.

В 1966 г. в американском журнале "Сайенс" была помещена статья Ф. Пресса и В. Брейса, в которой говорится:

"Несколько лет назад предсказание землетрясений было вопросом, который относился к компетенции астрологов, заблуждающихся любителей, авантюристов, стремящихся получить известность, и членов религиозных сект, проповедующих "день страшного суда". Не удивительно, что, если какой-нибудь ученый иногда осмеливался высказать какое-либо мнение по данному вопросу, он делал это с трепетом и сдержанностью, боясь, как бы его коллеги не отмежевались от него".

За последние годы положение резко изменилось. Чтобы показать, почему проблема предсказания землетрясений стала пользоваться уважением, почему над ее решением сейчас работают ученые многих стран, давайте рассмотрим некоторые сравнительно недавно происшедшие события, о которых вся мировая печать в свое время писала, как о самых страшных бедствиях.

В 1960 г. человечество постигли два катастрофических землетрясения, унесших тысячи жертв. В феврале был разрушен город Агадир в Марокко, в котором погибло около 15 000 человек. Едва успели сойти со страниц газет сообщения об Агадире, как произошло сильнейшее чилийское землетрясение или, точнее, ряд землетрясений в течение нескольких дней. Землетрясение вызвало изменение рельефа поверхности Земли в Южном Чили. Огромные морские волны, возникшие в результате землетрясения, с быстротой самолета пробежали по океану и обрушились на берега Филиппин, Японии, Курильских островов, Камчатки, отстоящих от Чили более, чем на 15 000 км. Только благодаря сравнительно малой населенности тех областей Чили, где произошло землетрясение, число жертв было относительно невелико - около 10 000; 2 000 000 людей осталось без крова. 28 марта 1965 г. Республику Чили постигла новая катастрофа, во время которой пострадало 35 городов. В эпицентре землетрясения глубина трещин достигала 30 км. Сейсмические приборы фиксировали толчки каждые 1 1/2 мин. Сила подземных ударов достигала 9 баллов.

Землетрясение для чилийца - явление обыденное. По крайней мере каждый третий день чилийцы прерывают разговор или работу, чтобы сказать: "Кажется, опять трясет - нужно закрыть форточку". Двенадцать раз в столетие Республика Чили, вытянувшаяся длинной и узкой лентой вдоль тихоокеанского побережья, переживает панику - дома исчезают в разверзнувшихся пропастях, земля становится на дыбы, реки выходят из берегов, превращая города в озера. За 65 лет XX века в Чили произошло 15 крупных землетрясений силой от 7,4 до 9 баллов. Ученые подсчитали, что в ближайшие 30 лет вероятность сильного землетрясения для столицы Чили достигает 90%. Причина этому одна: Чили, образно выражаясь, "пряжка на огненном поясе", охватывающем огромные пространства от Новой Зеландии до Финляндии, от Японии до Алеутских островов и все западное побережье Америки с севера на юг. В этой обширной зоне происходит 40% всех землетрясений планеты, причем самых сильных!

Чрезвычайно богата событиями сейсмическая история районов Дальнего Востока, Средней Азии и Ближнего Востока. Особое место занимает кебинское землетрясение, происходившее 4 января 1911 г. Оно было исключительным не только по силе, но и по площади распространения подземных толчков. Отзвуки землетрясения три раза обогнули весь земной шар. Была нарушена вся система горных цепей южнее Алма-Аты. Упругая энергия, вызвавшая кебинское землетрясение, по-видимому, была в несколько миллионов раз больше, чем при взрыве атомных бомб, сброшенных в 1945 г. на Хиросиму и Нагасаки. В 1948 г. в ночь с 5 на 6 октября, когда большинство жителей Ашхабада - столицы Туркменской республики - спало крепким сном, далеко на юге, там, где высятся голубые цепи гор, родился необычный гул. "Похоже было, - вспоминали потом те, кто бодрствовал в это время, -что из глубины Земли прямой наводкой ударили тяжелые орудия". Это был первый вертикальный толчок. После короткого перерыва один за другим стали сотрясать Землю горизонтальные толчки. Толчки силой 9 баллов, последовавшие за первым ударом, за несколько секунд вывели из строя электростанцию, радиоцентр, водопровод, уничтожили огромное число общественных сооружений, жилых домов и нежилых строений. Не всем удалось выбраться из-под обломков, не всех удалось спасти... Спустя 18 лет, 26 апреля 1966 г., весь мир облетело сообщение ТАСС: "...в 5 часов 23 минуты по местному времени в Ташкенте произошло землетрясение силой 7,5 балла..." В этот день тысячи семей ташкентцев остались без крова. Последующие подземные толчки, а их в сентябре уже насчитывалось около 700, привели к новым разрушениям: город потерял более 2 000 000 м2 жилья, было разрушено 220 детских учреждений, 181 учебное заведение, 36 крупных культурных учреждений. И, наконец, совсем недавно подземные силы природы. повергли в траур нашего соседа - Турцию. В городах восточных провинций Эрзуруме, Муше, Бингеле и др. число погибших и раненых достигло 12 000. Больше всех пострадал город Варто. Только здесь спасательные отряды турецкой армии извлекли из-под обломков зданий 2000 убитых и раненых. За два дня в Варто было зарегистрировано около 100 толчков силой до 8 баллов. Землетрясение сравняло город с землей.

Грандиозные чилийские катастрофы и сходные с ними по своим разрушительным последствиям ашхабадское и турецкое землетрясения - явления редкие. Однако, по данным международной сети сейсмических станций, ежегодно на Земле происходит по меньшей мере несколько миллионов регистрируемых приборами землетрясений, 19 000 ощущаемых людьми и 20 катастрофических (силой 11 - 12 баллов) землетрясений. Общая плотность упругой энергии при катастрофическом землетрясении, по расчетам ученых, достигает в эпицентре 1024 - 1025 эрг. Эта величина эквивалентна по сейсмической энергии 100 ядерным взрывам бомб, каждая из которых эквивалентна 100 Мт. Чтобы произвести такое количество энергии, Днепрогэсу пришлось бы работать в течение 300 - 350 лет! А так как на земном шаре каждые 2 час 37 мин происходит одно землетрясение такой же силы, как ташкентское, и в год не менее 1 - 2 катастрофических землетрясений в населенных районах, то нет нужды далее доказывать, насколько важно научиться предсказывать время наступления катастрофы в данном месте, чтобы можно было своевременно эвакуировать население или хотя бы вывести людей из домов на открытые места. Вероятно, приняв соответствующие меры, можно было бы предотвратить и тяжелые катастрофы на промышленных предприятиях.

Задача прогнозирования землетрясений столь же стара, как и проблема точного предсказания погоды, но во много раз сложнее ее. На какие только ухищрения не пускались сейсмологи в течение многих лет, чтобы уловить закономерность в появлении землетрясений! Какие только периоды не отыскивали в хаосе сейсмических событий за многие, многие годы! Пытались установить связи с фазами Луны, со сменой времен года, с одиннадцатилетним циклом солнечной активности, с дождями, с ветрами. Но все усилия ученых оказались тщетными. По-прежнему идут дожди и дуют ветры на нашей планете, дважды в день волны земных приливов вздымают на полметра земную кору, а последовательность подземных толчков упорно отказывается подчиняться навязываемым ей законам. Известный русский геолог И. Мушкетов подсчитал, что за истекшие 4000 лет на нашей планете погибло при землетрясениях не менее 13 000 000 человек. Ученые так и не научились предугадывать, когда, где и с какой силой может вздыбиться или разверзнуться Земля. Наука пока еще не может ни предупредить, ни предотвратить этого явления, порождаемого слепыми силами природы, и поэтому на протяжении последних десятилетий ежегодно, как показывают данные ЮНЕСКО, от землетрясений на Земле погибает более 14 000 человек, причем убытки достигают десятков и сотен миллионов долларов!

Почему же ученым не удается решить задачу прогноза времени наступления землетрясений и их силы? Дело в том, что землетрясения рождаются в недрах Земли, в очагах, находящихся на больших глубинах от ее поверхности, совершенно недоступных для прямого наблюдения средствами современной сейсмологии. Поэтому мы очень мало знаем пока о механизме возникновения землетрясения. В основе теорий механизма землетрясений лежат главным образом косвенные наблюдения, а именно: 1) данные о смещениях поверхности пород над районом центра землетрясения; 2) данные о свойствах образцов породы, подвергаемой напряжениям в лаборатории при высоком давлении и высокой температуре, соответствующих фактическим условиям в земной коре, и 3) наблюдения за картиной распространения сейсмических волн. Однако полученные до сего времени результаты - капля в море по сравнению с тем, что еще предстоит познать.

Если считать, что в программу исследований в области предсказания землетрясений должно входить изучение всех физических параметров, реагирующих на изменения напряжений, физико-химических свойств пород или на характер деформации, то потребуется еще целый ряд наблюдений.

Землетрясению всегда предшествует накопление энергии в веществе очага. Она может накапливаться, как указывает академик М. Садовский, за счет медленных, длящихся десятки, сотни, а может быть, и тысячи лет, течений вещества недр, в результате которых в нем возникают напряжения, подобные напряжениям в пружине. Накопление энергии идет до тех пор, пока не будет превышен порог прочности вещества. Когда это случается, вещество, грубо говоря, лопается, и в окружающей очаг среде начинают распространяться сейсмические волны - происходит землетрясение. Напряжения могут возникнуть и от неравномерного разогрева вещества внутренним теплом Земли (вспомним, как лопается стекло при неравномерном нагреве). Напряжения могут возникнуть также при переходе части вещества недр из одного состояния в другое (полиморфные переходы) и т. д. и т. п. В общем, каков бы ни был механизм возникновения землетрясения, его могут предвещать изменения наклона поверхности и напряжения в районе эпицентра, общее увеличение числа малых сейсмических явлений, изменения физических свойств пород близ сброса. Чувствительны к очень незначительным напряжениям сжатия и растяжения (порядка 10 - 9 - 10 - 8) уровни грунтовых вод. В частности, после большого землетрясения на Аляске в 1964 г. в юго-восточной части США наблюдалось изменение уровня воды в колодцах. Кроме того, в ответ на изменения магнитной восприимчивости или электропроводности может измениться геомагнитное поле; оно изменяется также в случае смещения точки Кюри. Еще более чувствительными индикаторами могут служить почвенные токи (естественные или искусственные); поскольку они прямо реагируют на изменение удельного сопротивления, это изменение в свою очередь может свидетельствовать об увеличении напряжений.

Из сказанного, по-видимому, ясно, что для прогнозирования землетрясений необходимо организовать с максимально возможной точностью регистрацию всех возможных признаков, предвещающих землетрясения. Однако землетрясения принадлежат к явлениям случайным. Поэтому для обеспечения максимальной вероятности того, что большинство землетрясений удастся "уловить", очевидно, необходимо установить в сейсмически опасных зонах сеть приборов, которые бы действовали непрерывно в течение длительных периодов времени, и вести за ними систематическое наблюдение. Но если вспомнить, что только в одной нашей стране 20% территории сейсмически опасны, то становится понятным, насколько это дорого и трудно. И хотя на первый взгляд такой подход к решению проблемы прогнозирования землетрясений может показаться эмпирическим и несколько расточительным (ввиду отсутствия проверенной теории механизма возникновения землетрясений), все же он вполне себя оправдывает, если учесть тот колоссальный, ни с чем не сравнимый вред, который приносят землетрясения человечеству.

В Советском Союзе работы по прогнозированию землетрясений были начаты еще в 1950 г., вскоре после ашхабадской катастрофы. Тогда под руководством покойного академика Г. А. Гамбурцева была разработана программа широких геофизических поисков предвестников землетрясений. Однако нехватка знаний о природе землетрясений и несовершенство технического оснащения воспрепятствовали должному развитию работ. Сейчас положение существенно изменилось. На территории Ташкента сейсмоприемники, опущенные в специально пробуренные скважины, достигли глубин в 500 м. Это позволяет следить за микроземлетрясениями, которые на поверхности фиксировать нельзя - мешает шум города. В некоторые скважины опущены микрофоны, с помощью которых ведется запись подземных гулов. Высокочувствительные приборы регистрируют медленные наклоны земной поверхности. Они позволяют отмечать даже влияние лунно-солнечного притяжения на поверхность Земли. Проводятся наблюдения за электрическими явлениями в атмосфере и т. д. и т. п.

Большую работу по изучению проблемы прогнозирования землетрясений ведут американские ученые. Вместе с японскими специалистами они разработали проект, предусматривающий установку в самых активных в сейсмическом отношении зонах США (Сан-Андреас, Гарлок и Оуэнс-Вэлли в Калифорнии и Дикси-Вэлли в Неваде, восточнее Рено) приблизительно 15 постоянно действующих групп приборов (чувствительные сейсмографы, наклонометры, тензометрические датчики, магнитометры, записывающие гравиметры, метеорологические приборы, приливометры и специальные съемочные устройства). Сейсмометры, наклонометры и тензометрические датчики собираются разместить в скважинах на глубине 3 - 5 км. Каждая группа приборов будет размещена в районе площадью 100 - 1000 км2. Всего в районе Калифорния - Невада предполагается использовать приблизительно 1000 - 1500 датчиков. Намечено создание специальной системы для автоматической передачи и анализа данных, сообщаемых приборами. Отдельные элементы групп датчиков и сами группы датчиков будут связаны телефонной и микроволновой сетями, причем все сведения будут передаваться в центральный вычислительный центр. Вычислительные машины будут анализировать все поступающие данные. Датчики будут согласованы между собой; будут учитываться такие явления, как атмосферное давление, изменение уровня моря, приливо-отливные силы, суточное повышение и понижение температуры, изменения в тектонических напряжениях и землетрясения. Методы численной корреляции и предсказания будут запрограммированы.

Необходимо подчеркнуть, что результаты такой обширной исследовательской программы невозможно сейчас предугадать. Можно лишь сказать одно: если эта программа будет в достаточно полной мере претворена в жизнь, то можно ожидать, что многие землетрясения произойдут в тех местах, где будут размещены приборы для регистрации признаков, предвещающих землетрясение. И если в природе действительно происходят какие-то явления, предвещающие землетрясения, то описанная выше программа имеет много шансов помочь их выявлению.

По-иному собираются решить проблему прогнозирования землетрясений некоторые бионики. Так, например, профессор Токийского университета Ясуо Суэхиро считает, что научиться предсказывать землетрясения можно, тщательно изучив поведение ряда обитателей океанских глубин и прежде всего глубоководных рыб, которые, согласно его гипотезе, заблаговременно чувствуют приближение бедствия. Свою гипотезу японский ученый аргументирует большим числом собранных им на протяжении многих лет исторических записей, свидетельств очевидцев, достоверных фактов. Вот два особенно интересных факта.

Летом 1923 г. бельгийский ихтиолог-любитель был поражен, увидев у самого пляжа в Хаяма, близ японской столицы, раздувшуюся на мелководье "усатую треску", которая, по словам жителей, водится только на очень больших глубинах. Через два дня страшное землетрясение разрушило Токио и погубило 143 000 человек. В 1933 г. один рыбак принес биологу пойманного в районе Одавара угря, какие живут обычно на глубине нескольких тысяч метров. В тот же день сильный подземный толчок встряхнул тихоокеанское побережье Японии, в результате чего погибло 3000 человек.

Нужно сказать, что, несмотря на обилие собранных фактов такого рода, профессор Ясуо Суэхиро еще совсем недавно не был вполне уверен в правильности выдвинутой им гипотезы о способности рыб "предсказывать" надвигающуюся катастрофу. По собственному признанию, он даже наедине с собой нередко посмеивался над реальностью такой возможности. Однако случай, происшедший 11 ноября 1963 г., рассеял все его сомнения на сей счет. В то утро жители острова Ниид-зима, расположенного к югу от Токио, поймали "морское чудовище" - неведомую глубоководную рыбу длиной 6 ж. Руководители радио- и телецентра предложили профессору отправиться туда на вертолете, чтобы сделать репортаж о необычайной находке. Но из-за лекций Ясуо Суэхиро вынужден был отказаться от поездки и на прощание шутя сказал, что, судя по всему случившемуся, вскоре надо ждать землетрясения. И оно действительно произошло в районе острова Ниидзима два дня спустя!

Теперь уже японский профессор больше не шутит на эту тему. Он пришел к твердому убеждению, что всестороннее изучение поведения глубоководных рыб накануне землетрясений может оказать большую помощь ученым в решении проблемы прогнозирования страшного бедствия. Исходя из этого, Ясуо Суэхиро в 1964 г. обратился через печать к мировой общественности с просьбой сообщать ему о всех наблюдениях над поведением обитателей океанских глубин накануне крупных землетрясений по адресу: Токио, район Бунке, биологический факультет Токийского университета.

Просьба Ясуо Суэхиро нашла понимание и поддержку у ученых многих стран. В частности, один из крупнейших советских ихтиологов профессор Т. С. Расс, которого попросили прокомментировать призыв Ясуо Суэхиро, заявил следующее: "Гипотеза японского ученого заслуживает самого пристального внимания. По-моему, все ученые с удовольствием помогут профессору Ясуо Суэхиро своими наблюдениями".

Прошло три года, и в нашей печати появилось сообщение: "Недавно группа сотрудников ВНИИГеофи-зики, а также Института морфологии животных АН СССР - В. Протасов, Л. Рудаковский, В. Васильев и др.- открыла новое чувство - "сейсмический слух" (предчувствие землетрясений). Исследования, проведенные в аквариумах и бассейнах Подмосковья, уже позволили приступить к разработке опытной установки, которая будет управлять поведением рыб в естественных условиях. А впереди - создание нового типа сейсмоприемника" (вот она - бионика!).

Имеется у биоников и другой богатейший источник, из которого они могут черпать различные симптомы, связанные с приближением землетрясения, - это мир животных, обитающих на суше. По наблюдениям людей, переживших землетрясения, приближение катастрофы чувствуют заблаговременно и показывают это своим тревожным поведением собаки, кошки, гиены, тигры, слоны, львы и многие другие домашние и дикие звери. Проиллюстрируем это взятыми из жизни примерами.

В 1954 г. накануне землетрясения, разрушившего Орлеанвиль (Алжир), многие домашние животные покинули жилища. В том же году аналогичное поведение животных накануне землетрясения было отмечено в Греции. Жители, обратившие внимание на это предостережение, остались живы.

За много часов до землетрясения в Скопле (Югославия), подвергшего город жесточайшему разрушению, животные зоологического парка начали проявлять необычное беспокойство. Сторож парка Борче Трояновский рассказывает, что никогда ранее ему не приходилось слышать такого ужасного "концерта", как в ту страшную ночь накануне землетрясения. Первым, приблизительно за 4 - 5 час до землетрясения, начал завывать испуганным и каким-то трагически глухим голосом одичавший потомок завезенной когда-то в Австралию домашней собаки - динго. На его голос тут же откликнулся сенбернар. К их "дуэту" присоединились грозные голоса десятков других зверей. Испуганный бегемот выскочил из воды и перепрыгнул через стену высотой в 170 см. Жалобно кричал слон, высоко подымая хобот. Громко завывала гиена, очень неспокойно вели себя тигр, лев и леопард. К жуткому

"концерту" зверей присоединились птицы - обитатели парка. Взволнованные сторожа различными способами старались успокоить своих подопечных, но желаемого результата не достигли. Прошло еще немного времени, и как будто по чьей-то властной команде звери внезапно умолкли, скрылись в глубине своих клеток и, притаившись в темноте, стали чего-то ожидать. Теперь панический страх охватил обслуживающий персонал. Хотелось бежать... Но было уже поздно: затряслась Земля, начал нарастать подземный гул. В 5 час 17 мин 26 июля 1963 г. произошел первый страшный толчок, за ним второй... и город Скопле превратился в бесформенную груду камня; при этом погибло около 1500 человек.

А вот еще несколько интересных фактов, собранных в разное время журналистом В. Песковым и опубликованных им на страницах газеты "Комсомольская правда" 15 мая 1966 г. из района ташкентского землетрясения.

"Дня за два до ашхабадской катастрофы к ответственному работнику пришли старики туркмены: "Будет землетрясение".- "Откуда вы знаете?" - "Змеи и ящерицы ушли из нор..." Через два дня произошло землетрясение".

Вот запись трехлетней давности: "В поезде сосед по купе достал семейные фотографии. Среди портретов я увидел снимок овчарки. "Почти как человек дорога эта собака...- сказал сосед.- Мы с женой работали в Ашхабаде. В ту ночь поздно вернулись домой. Спать не сразу легли. Я копался в бумагах. Жена читала. Дочка в коляске спала. Вдруг - чего не бывало ни разу - собака рванулась с места и, схватив девочку за рубашку, кинулась в дверь. Сбесилась! Я за ружье. Выскочили с женой. И тут же сзади все рухнуло. И весь город обрушился на глазах..."

А вот несколько фактов, записанных только что. Корреспондент газеты "Советская торговля" Олег Бычков рассказал: "26-го я проснулся от неприятного чувства: кто-то скребется в постели. Глянул - котята под одеялом. Кошка понатаскала. Я прогнал кошку, а котят перенес на кухню, где они и были всегда. Подошел к крану ополоснуть руки, и вдруг меня кинуло так, что ударился головою о стену..."

Аркадий Забровский рассказывает: "У меня десятка четыре разных пород голубей. За полминуты до первых толчков голуби вдруг с шумом покинули голубятню и, полетав в темноте, уселись на крышу. Никогда ночью такого не было. Я еще подумал: что это значит? И вдруг началось... И теперь перед каждым толчком стая взлетает..."

Таких примеров, убедительно свидетельствующих о том, что в окружающем нас мире животных имеется много своеобразных, весьма чутких провозвестников землетрясений, можно было бы привести еще уйму. Однако о них люди почему-то больше всего вспоминают после страшных катастроф, а не перед ними. И никто из ученых, насколько нам известно, изучением "устройства" и "принципа действия" этих разнообразных "живых сейсмографов" до последнего времени всерьез не занимался. Но надо надеяться, что за это дело энергично возьмутся бионики разных стран и вместе с биологами, инженерами и сейсмологами начнут изучать подмеченные корреляционные связи между поведением живых организмов и приближением землетрясения. Тогда найдут в конце концов какие-то однозначные связи между инстинктами животных и изменением их поведения накануне стихийного бедствия и выяснят природу переносчиков и каналов распространения, а также устройство созданных природой механизмов восприятия сейсмической информации. А это уже могло бы служить началом научного предвидения землетрясений.

Разумеется, при поисках решения столь сложной проблемы, как прогнозирование землетрясений, впереди могут и безусловно встретятся болотные огни суеверий, но на этом же пути исследователей наверное ждут и ценнейшие для современной науки и техники находки и открытия. И вот тому доказательства. Недавно серией экспериментов удалось установить, что водяной жук ощущает своими волосками водяные волны высотой в 0,00000004 мм, а саранча чувствует механические колебания с амплитудой, равной диаметру атома водорода! Исключительно чутко воспринимает движение и маленький кузнечик из семейства титигония. Он чувствует самые незначительные движения почвы, передаваемые растениями, на которых сидит.

Кузнечик способен, как показали исследования, реагировать на колебания, амплитуда которых равна половине диаметра атома водорода! Это значит, что землетрясение в районе Дальнего Востока отмечают кузнечики Московской области. Разве не заманчиво познать "конструкции" всех этих сверхчувствительных "сейсмографов", созданных природой, воспроизвести их в металле и передать на вооружение сейсмологам?

На повестке дня у биоников стоит решение еще одной волнующей человечество проблемы. Мы имеем в виду так называемую проблему "вулканного прогноза".

Трудно представить себе явление более грозное, чем разгул вулканов. Во время извержения вершину вулкана окутывает клубящееся лиловое облако, похожее на гигантский кочан цветной капусты. Освещенное отблесками лавы, оно разрастается, заслоняет Солнце, засыпает все вокруг горячим пеплом. Еще страшнее кар^ тина ночного извержения: с вершины горы к цветущим садах, зеленым равнинам и притихшим селениям движутся огненные потоки лавы, все сжигая на своем пути; обгоняя медлительную лаву, с ревом несутся горячие грязевые потоки, они увлекают с собой вырванные с корнем деревья, огромные каменные глыбы, несут смерть всему живому. Пепел Везувия похоронил на 16 веков древние города римлян Геркуланум и Помпею; в 1815 г. при извержении вулкана Тембо было выброшено в воздух около 150 км3 пепла. Взрыв индонезийского вулкана Кракатау 27 августа 1883 г. унес более 40 000 человеческих жизней. Вулкан и сам остров взлетели на воздух. Гигантский столб вулканического пепла поднялся на высоту 30 км. Грохот взрыва слышали на расстоянии 5400 км. Взрывная воздушная волна мчалась со скоростью звука и трижды обогнула Землю. Другая волна - цунами - поднялась в океане на 35 м и совершила кругосветное путешествие со скоростью турбовинтового самолета - 566 км/час. Вулкан Катман на Алеутских островах в 1912 г. выбросил при извержении 8,5 км3 обломков весом в 29 000 000 000 т. При последнем недавно происшедшем извержении вулкана Этны поток огненной лавы, вышедшей из кратера, достигал 50 м ширины и 4500 м длины.

Один из наиболее "бойких" вулканов полуострова Шевелуч извергался в течение 6 лет. Пусть не очень сильно, зато весьма систематично. Последний взрыв был короток. В геологическом аспекте и вовсе ничто: час-полтора. Но из кратера рванулся в небо 1 км3 огненной массы, и на десятки километров вокруг стал неузнаваем камчатский пейзаж. Новыми руслами потекли реки, новые хребты закрыли Солнце, земля вокруг покрылась толстым панцирем лавы. Вот что натворил один только вулкан, и только однажды! А таких богатырей на Камчатке добрых 2 - 3 десятка. И у каждого свой норов, и каждый время от времени стремится показать его. Был, например, вулкан Безымянный. Так долго дремал он, что люди и забыли, как его зовут. А потом вдруг проснулся. За год его бодрствования приборы зарегистрировали 30 000 больших и малых извержений. Если бы мы умели использовать силу только одного этого вулкана, то даже мощность крупнейшей ГЭС нам показалась бы ничтожной.

В настоящее время на поверхности Земли известно более 500 действующих вулканов. Из них 2/3 сосредоточены на берегах и островах Тихого океана. Только в одном Чили более 30 действующих вулканов, на острове Ява - 35, а на Аляске и Алеутских островах - 50 огнедышащих гор. Много действующих вулканов есть и в Советском Союзе. Они находятся у самых рубежей нашей родины - на Камчатке и Курильских островах. Наряду с действующими вулканами в различных странах мира имеется немало и бездействующих, потухших, уснувших. Предвестниками их извержения иногда служат подземный гул и толчки; источники на склонах у подножия вулкана иссякают либо, наоборот, усиливают свою деятельность; на склонах и в кратере появляются трещины, выделяющие удушливые газы или горячую воду. В большинстве же случаев извержение вулкана начинается неожиданно. И предсказанию этого явления мало помогают даже самые высокочувствительные современные приборы, которыми снабжены службы наблюдения за "временно отдыхающими" и "ворчащими во сне" вулканами.

Американские вулканологи не так давно начали исследование вулкана Килауэа на Гавайских островах с самолетов, на которых установлена сверхчувствительная инфракрасная и обычная оптическая аппаратура.

Запланировано снять термокарту, на которой должно обнаружиться коренное различие между излучением в глубине вулканов и в окружающих спокойных областях. С ее помощью ученые собираются изучать зависимость между инфракрасным излучением и вулканической активностью. Эти исследования, как полагают вулканологи, быть может, позволят создать систему предупреждения извержений вулканов.

Между тем имеется немало данных, говорящих о том, что многие животные обладают способностью предвидеть извержение вулкана. Известен, например, такой достоверный исторический факт. 8 мая 1902 г. раскаленное газовое облако, вырвавшееся из кратера вулкана Мон-Пеле, за 30 сек сожгло город Сен-Пьер на острове Мартиника и всех его жителей. После катастрофы в грудах развалин и в дыме пожарищ нашли 30 000 погибших людей и один-единственный труп кошки.

Куда же девались все домашние животные, принадлежавшие некогда жителям Сен-Пьера, птицы и звери, обитавшие вокруг вулкана?

Оказывается, что с середины апреля животные начали по собственной инициативе "эвакуироваться". Первыми двинулись в путь птицы. С незапамятных времен некоторые перелетные птицы делали привал на озере вблизи города, на этот же раз они, не задерживаясь, пролетели мимо и устремились на юг Африки. На следующий день многие местные пернатые с оглушительным щебетанием тоже покинули город. Заметно оживились в это время обитатели густых зарослей на Мон-Пеле - змеи, а те, которые находились вблизи кратера вулкана, по-видимому, решили, что им пора уже покинуть родные места, и 17 апреля они двинулись в путь-дорогу. По их "стопам" устремились и пресмыкающиеся.

Несколько дней спустя угроза стала очевидной. Вулкан все больше и больше мрачнел. И вот 3 мая в 5 час 45 мин преподаватель лицея в Сен-Пьере наскоро делает такую запись: "Собаки лают. Корова стремительно бежит по дороге, птички беспрестанно перелетают с ветки на ветку, голуби сидят нахохлившись в голубятнях, куры и утки не выходят из клеток".

А через 5 дней, когда за 30 сек город Сен-Пьер был стерт с лица земли, на его пепелище, как было сказано выше, нашли труп только одной кошки. Все остальные животные, в отличие от людей, не были застигнуты врасплох, они успели вовремя покинуть место, превратившееся в ад.

В чем же секрет умения животных предчувствовать извержение вулкана? Что именно пробуждает в животных тревогу за свою судьбу задолго до катастрофы, когда людям вокруг кажется все спокойным, - шум ли, не слышимый человеческим ухом, неуловимое ли содрогание почвы или не ощутимое никакими современными приборами инфракрасное излучение, идущее из глубин вулкана? Ученые пока не могут ответить на этот вопрос, но факт остается фактом - многие животные обладают замечательной способностью предвидеть извержение вулкана. Именно это и заставляет специалистов по бионике заняться научным исследованием загадочного феномена.

В свете рассматриваемой нами проблемы не может не привлечь к себе самого пристального внимания ученых и такое замечательное творение природы, как королевская примула. Она растет на острове Ява и называется там "цветком землетрясения". Королевскую примулу можно найти лишь на склонах вулкана. Она отличается от всех своих сестер-примул тем, что расцветает только накануне извержения вулкана и служит местным жителям своеобразным сигнализатором грозящего им бедствия. Завидев расцветшую королевскую примулу, жители деревень, расположенных у подножья вулкана, всегда покидают свои дома и устремляются в безопасные места. И заметьте - этот чудесный цветок ни разу не ошибся в своих предсказаниях.

Поистине нет границ изобретательности кудесницы-природы. Она еще не один раз заставит биоников удивляться гениальности своих творений, но вместе с тем она, несомненно, подскажет им не одну замечательную идею для создания высокосовершенной техники прогнозирования штормов, ураганов, цунами, землетрясений, извержений вулканов. И когда инженеры воплотят эти идеи в электронные системы, а метеорологи, сейсмологи, геофизики и вулканологи начнут ими повседневно пользоваться, слепые силы природы уже не будут больше властны над человеком. Человек победит стихию!

предыдущая главасодержаниеследующая глава








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь