|
Логика путиПожалуй, ни одна биологическая структура не привлекла к себе столь пристального внимания ученых, как ядро клетки и хромосомы. Уже более ста лет (клеточное ядро было открыто в 1835 году Робертом Брауном) идет непрерывный штурм этой микроскопической крепости. Сейчас проблемой занимаются тысячи ученых самых различных специальностей: цитологи, генетики, вирусологи, физико-химики, биохимики, математики. Какие же факты заставляют ученых именно в клеточном ядре и хромосомах искать механизмы наследственной передачи? Прежде всего некоторые общие закономерности развития организмов, которые уже сравнительно давно удалось выявить биологам. Ближайшие потомки всегда в той или иной степени похожи на своих предков. Во всяком случае, потомство всегда повторяет основные черты строения родителей. Это так привычно, что часто даже не вызывает вопроса: почему? Причиной такого сходства является наследственность. Что же такое наследственность? Как протекает процесс передачи наследственных признаков от отцов и матерей к детям? Какие структуры в клетках организмов являются носителями индивидуальных признаков всякого существа? Или, другими словами, каковы материальные, вещественные основы наследственности? Ответить на эти вопросы стало возможным лишь после того, как были установлены основные положения клеточной теории строения организмов, а главное, изучено строение самих клеток, этих микроскопических "единиц жизни". Сходство детей с родителями является едва ли не самой общей биологической закономерностью. Все живые существа - от примитивнейшего вируса до человека - обладают способностью передавать потомкам по наследству основные черты своего строения. Вот эта способность воспроизводить себя в потомках и называется наследственностью. Следует сказать, что понятие наследственности применимо не только к целостным организмам. Наследственностью обладает и каждая отдельная клетка организма. Известно, например, что в процессе жизни организма мышечные клетки делятся и количество их увеличивается, но мышца остается мышцей. Это значит, что каждая клетка при делении производит новую клетку, как правило похожую на себя, себе подобную. Однако, если способность живых организмов повторять свои наследственные особенности в поколениях - одна из самых общих закономерностей живой природы, то не менее общей Закономерностью является и их способность изменяться. Изменчивость и наследственность представляют собой как бы две стороны одного явления. В природе идет постоянный процесс передачи наследственных свойств от родителей к детям и так же постоянно идет процесс изменчивости. Ведь дети никогда не представляют собой абсолютных копий родителей. Биологическая дисциплина, занимающаяся явлениями наследственности и изучением законов, управляющих сходствами и различиями между родственными органами, называется генетикой. Итак, развитие каждого организма, как бы сложно он ни был построен, всегда начинается с клетки. Клетка, дающая начало каждому сложному организму, называется яйцом, или яйцеклеткой. Яйцеклетки вырабатываются в теле женской особи. Но чтобы яйцо начало развиваться, необходимо оплодотворение его другой половой клеткой - мужской. В результате слияния женской и мужской половых клеток (яйцеклетки и сперматозоида) образуется одна новая клетка - оплодотворенное яйцо, или, как его еще называют, зигота. Из нее путем многочисленных делений развивается сложный организм, состоящий иногда из многих миллиардов клеток, составляющих его ткани и органы. Таким образом, преемственность, связь между различными поколениями организмов, осуществляется через одну клетку. И поскольку из этой клетки, как правило, развивается организм, имеющий черты сходства с родителями, естественно сделать вывод, что основные черты строения будущего организма заложены уже в зиготе и половых клетках, в результате слияния которых она образовалась. К такому пониманию биологическая наука пришла давно. Но это только общее, хотя и правильное, заключение. Оно ведь не может объяснить, как, в виде каких материальных структур качества и признаки родителей заложены в половых клетках. И пока наука не была вооружена микроскопической техникой, ученые серьезно полагали, что в половых клетках уже в готовом виде присутствует миниатюрный организм с зачатками всех будущих органов, а поэтому развитие - лишь рост этих зачатков. Спорили лишь о том, где помещается этот микроскопический организмик - в яйцеклетке или сперматозоиде. Когда же для изучения половых клеток применили сильные микроскопы, спор решился сам собой - обе стороны были не правы. Оказалось, что по своему строению половые клетки в принципе не отличаются от других клеток тела. Никакого маленького организмика, который потом должен вырасти, в них нет. Они, как почти все клетки, имеют оболочку, протоплазму, ядро. Какая же часть клетки играет основную роль в передаче наследственных признаков от материнской клетки к дочерней, от родителей к детям: ядро или протоплазма? Этот вопрос давно волновал ученых. В настоящее время, когда процесс деления клеток у различных видов животных и растений детально изучен, можно считать общепризнанным, что в большинстве случаев ведущую роль в передаче наследственных признаков играет именно клеточное ядро. О роли ядра можно судить по тем последствиям, которые влечет за собой удаление его из клетки или пересадка ядра из одной клетки в другую. При современной технике микрохирургии такие операции вполне доступны. Можно проделать, например, следующую операцию. Взять амебу и при помощи стеклянной иглы разрезать на две части: безъядерную и содержащую ядро. Теперь, наблюдая за поведением полученных частей, мы увидим такую картину. Безъядерная часть некоторое время двигается, но вскоре округляется, становится нечувствительной к воздействиям внешней среды и гибнет. Та же, где осталось ядро, нормально реагирует на внешние раздражители, двигается, поглощает пищу и вовремя делится. Итак, протоплазма без ядра существовать не может. Но здесь возможны и возражения. Дескать, это все равно, что отрезать кому-то ногу и ожидать, что она будет самостоятельно жить. Но вот другой опыт. При помощи микроскопического стеклянного кружочка из амебы удаляется ядро. Амеба сейчас же округляется и начинает вести себя, как безъядерная часть в предыдущем опыте. Однако, если осторожно ввести ядро обратно, нормальная жизнедеятельность амебы восстанавливается. Здесь уже совершенно четко видно, что изолированная протоплазма нежизнеспособна и что ее жизнедеятельность каким-то образом вызывается и регулируется ядром. Опыты по пересадке ядра в некоторых случаях помогают также установить, на какие функции клетки оно влияет. Таковы, например, опыты, проделанные на водорослях ацетобуляриях. Каждая из этих водорослей, хотя и имеет подошву, стебелек и шапочку, представляет собой всего одну клетку. Шапочка у этих водорослей восстанавливается заново, если ее удалить механическим путем, допустим, оборвать. Кроме того, форма шапочки является характерной для каждого вида ацетобулярий. Водоросли эти довольно велики для одноклеточных и достигают шести сантиметров. Итак, у водоросли одного вида удаляли шапочку, и, до того как она успеет регенерировать (восстановиться), в эту водоросль пересаживали ядро, взятое от ацетобулярии другого вида. Теперь легко наблюдать интересное явление: восстановившаяся заново шапочка имела форму, среднюю для этих двух видов. Мало того, если водоросли с удаленной шапочкой пересаживали не одно, а несколько ядер другого вида, то ее новая шапочка становилась больше похожей на шапочки тех водорослей, от которых брали ядра, чем на шапочки своего вида. Совершенно очевидным образом клеточное ядро влияло на процессы формообразования. Но ведь форма шапочки - признак наследственный, характерный для каждого вида ацетобулярий! Вопрос о том, какая же часть клетки (ядро или протоплазма) играет основную роль в передаче наследственных признаков от материнской клетки к дочерней, от родителей к детям, явился предметом многих споров и дискуссий в самом недавнем прошлом. Сейчас мало у кого вызывает сомнение, что такая роль принадлежит именно ядру. Особенно это становится ясным, если познакомиться со строением ядра и его поведением в процессе деления клетки. Если поместить под микроскоп живую клетку и попытаться рассмотреть структуру ее ядра, то в большинстве случаев такая попытка окажется безуспешной. Во многих живых клетках часто невозможно различить не только внутреннее строение ядра, но и само ядро. Чтобы ядро стало ясно видно и доступно изучению, клетки обрабатывают специальными красками, которые впитываются веществом ядра гораздо лучше, чем цитоплазмой. Теперь на окрашенном препарате можно различить нежную ядерную оболочку, а в самом ядре одно или несколько крошечных телец, так называемых ядрышек. Но этого мало. Все ядро оказывается пронизанным пересекающимися по разным направлениям и переплетающимися нитями, зернами и глыбками. Это ядерная сеть. Она очень хорошо красится ядерными красками, и поэтому получила название "хроматина" (от греческого "хрома" - цвет). Все остальное пространство в ядре заполнено вязкой жидкостью - ядерным соком. Таково вкратце строение "покоящегося" ядра, когда клетка не делится. Но вот клетка начинает делиться, и весь ядерный аппарат приходит в движение. Ядро увеличивается в размерах и становится почти шарообразным, если в покоящейся клетке его форма была иной. Количество хроматина в ядре быстро нарастает. Отдельные хроматиновые зерна слипаются друг с другом, образуя нить, свернутую в тугой клубок. Но процесс идет дальше. Постепенно плотный клубок хроматиновой нити делается рыхлым, а сама нить становится короче и толще. Это уже не нить, а лента. Проходит еще некоторое время, и лента хроматина распадается, дробится на отдельные участки всегда определенного количества. Образующиеся таким путем куски хроматиновой ленты получили название хромосом. "Хрома", как вы помните, по-гречески - цвет; "сома" - тело. Хромосома - красящееся тельце. Ничего больше, кроме обозначения реально существующих и возникающих в ходе деления клетки отдельных участков хроматиновой ленты, это слово не значит. Однако запомните его хорошенько, ибо очень многое как в судьбе отдельной клетки, так и в судьбе сложнейших многоклеточных организмов связано именно с хромосомами. Но вернемся к процессу деления клетки. Обычно для его изучения используются, так сказать, "мертвые", окрашенные препараты. Однако современная техника микроскопирования и киносъемок позволяет в некоторых случаях наблюдать и деление живой клетки. Несколько лет назад мне довелось присутствовать на демонстрации одного из первых фильмов такого рода. ...Клетка жила на экране. Ее цитоплазма мягко колыхалась, переливаясь и мерцая возникающими и пропадающими бликами гранул и вакуолей. Ядро выглядело то более светлым, то вдруг начинало темнеть. Иногда оно как будто вздрагивало. Его строение ни на минуту не оставалось постоянным: шел процесс образования хромосом, шла полная реконструкция ядра. Вот вдруг исчезло ядрышко. Затем, совершенно неожиданно для наблюдателей, пропала и ядерная оболочка. Ядра как такового уже не стало: ядерный сок смешался с цитоплазмой. И весь вид клетки стал иным. Там, где когда-то было ядро, теперь лежали хромосомы. Они располагались почти правильной звездой, напоминая одну из фигур хоровода "Березка". Зал замер. И, хотя здесь собрались цитологи, люди, просмотревшие под микроскопом не одну тысячу препаратов, все глядели на экран с напряженным вниманием. Наступал самый существенный и замечательный момент - деление ядра. На глазах у всех должно было произойти чудо, на котором природой основано существование всего живого. И оно произошло. Изображение вдруг дрогнуло, и хромосом стало вдвое больше. Из одной звезды образовались две, наложенные друг на друга. Каждая хромосома расщепилась вдоль строго пополам, и теперь на ее месте лежали две дочерние хромосомы, абсолютно похожие друг на друга и на свою прародительницу. Так все хромосомы клетки воспроизвели самих себя. Но картина двух "звезд" держалась недолго. Вначале незаметно, а потом все быстрее и быстрее хромосомы начали расходиться к противоположным полюсам клетки. Пары хоровода распались, дочерние хромосомы неотвратимо удалялись друг от друга. Клетка делила свое наследство. Происходило это все удивительно четко. Как будто на двух половинах экрана показывали из двух аппаратов один и тот же фильм. И в левой и в правой сторонах клетки хромосомы совершали одинаковые движения. Но вот, наконец, они остановились, собравшись в кучку у противоположных полюсов клетки. Здесь между хромосомами начали образовываться соединения и перемычки. Хромосомы теряли свою индивидуальность, складываясь в хроматиновые ленты, свернутые в клубок. Затем каждый из клубочков оделся нежной ядерной оболочкой. Так в результате сложных превращений из одного материнского ядра образовались два новых. Параллельно с делением ядра протоплазматическое тело клетки также подвергалось изменениям. В момент расхождения хромосом к полюсам клетки на ней по экватору появились перетяжки (бороздки). Они все больше и больше углублялись в тело клетки, и в конечном итоге она оказалась расчлененной пополам. Процесс деления клетки завершился. Теперь вместо одной материнской клетки на экране были две новые. Каждая из них жила своей жизнью. И в каждой ритмично пульсировало свое ядро. Дочерние клетки, как правило, очень похожи друг на друга, а также на ту исходную, из которой они произошли. И, наблюдая процесс деления клетки, легко понять, откуда возникает такое сходство. Ведь весь механизм деления был направлен именно на то, чтобы вещество материнской клетки распределилось между дочерними как можно более точно. И особенно это относится к веществу ядра, к его хроматиновой части. Вспомним, -как распределялся хроматин. Хроматиновая лента распалась на сегменты - хромосомы; хромосомы расщепились вдоль на половинки, из которых и образовались новые ядра. Таким образом, количество хроматина было разделено предельно точно. И что особенно важно подчеркнуть, произошло не только точное распределение хроматина по количеству, но он оказался также точно распределенным и качественно. Ведь вновь образовавшиеся хромосомы (половинки) расходились всегда в противоположные стороны. На основании изучения механизма деления клеток и Роли хромосом в равномерном распределении ядерного вещества в биологии возникло представление, что именно через хромосомы и происходит передача наследственных признаков от клетки к клетке. Такое представление получило название хромосомной теории наследственности. Выдача хромосом Давайте посмотрим, на какие же еще факты опирается эта теория. А факты интересные. Так, изучение количества хромосом в клетках различных животных и растительных органов выявило удивительную закономерность. Выяснилось, что в каждой клетке (любого организма данного вида) содержится строго определенное число хромосом, характерное для данного вида. Например, в клетках тела кролика всегда присутствуют 44 хромосомы. У кошки их 36, у лошади - 60. Твердые пшеницы имеют 28 хромосом, мягкие - 42 хромосомы, а у кукурузы их 20. Но числовой разброс велик. И вот границы. У одного из видов круглых червей в клетках тела имеется всего лишь 2 хромосомы, в то время как у микроскопического морского животного радиолярии их около 1600. Таким образом, число хромосом в клетках тела характерно для каждого вида животных и растений. На этом основании утвердилось правило, что все особи внутри каждого вида должны иметь одинаковое число хромосом. Это положение получило название "закона постоянства числа хромосом". Число хромосом в клетках тела человека равно 46. Такое число хромосом содержат все клетки тела человека, независимо от того, идет ли речь о Клетках сердца или печени, пальца или легкого. Почему? На этом стоит остановиться подробнее. Под микроскопом легко видеть, что присутствующие в клетках хромосомы далеко не одинаковы. Они отличаются друг от друга по длине, форме, наличию утолщений или перетяжек и т. д. Каждая хромосома имеет как бы свое лицо. Однако, присмотревшись внимательно, можно найти и "лица", похожие друг на друга. Еще внимательнее: и вы видите, что таких похожих не больше двух. Пары! Да, в каждой клетке нашего тела не просто 46 хромосом, а 23 различные пары. Как бы двойной набор одного определенного ассортимента. Такой двойной набор хромосом называется диплоидным, а отсюда и содержащие его клетки диплоидными. Все клетки нашего тела диплоидны. Исключение составляют только зрелые половые клетки, или гаметы (яйцеклетки и сперматозоиды), в которых содержится не двойной, а одинарный, или гаплоидный, набор хромосом (у человека 23 хромосомы). В чем же смысл такой, всегда двукратной, разницы в количестве хромосом между воспроизводящими (половыми) и телесными клетками? Давайте рассуждать. Как вы помните, развитие любого организма начинается с одной клетки - зиготы. Образуется зигота в результате слияния двух клеток: мужской и женской. И каждая из них привносит в зиготу свой (одинарный) гаплоидный набор хромосом. Уже в первичной клетке, из которой впоследствии разовьётся новый организм, наследственные признаки родителей представлены на равных началах. Зигота имеет уже двойной (диплоидный) набор хромосом, который и будет воспроизведен во всех клетках тела при последующем росте и развитии. Следовательно, биологический смысл присутствия в клетках тела всегда двойного набора хромосом заключается в том, чтобы представить в потомстве наследственность обоих родителей. Итак, детальное изучение процесса деления клетки приводило к выводу, что передача наследственных признаков и свойств исходной клетки связана с распределением вещества ее ядра между клетками дочерними. Было бесспорно установлено, что важнейшими структурами, обеспечивающими необходимую точность такого распределения, являются хромосомы. И естественно, следующим логическим шагом было выяснение химического состава хромосом. Оказалось, что они построены главным образом из двух химических соединений: белка и нуклеиновой кислоты. Оба эти органические соединения представляют собой гигантские молекулы с огромными (миллионными) атомными весами. Итак, по химическому строению хромосомы - нуклеопротеиды, соединение белка с нуклеиновой кислотой. Генетика Но какое из этих веществ ответственно за передачу наследственных признаков? Белок или нуклеиновая кислота? А может, оба вместе? И наконец, каким образом на микроскопически маленьких образованиях, хромосомах, "записано" огромное число "сведений" о чертах строения будущего взрослого организма или пусть даже отдельной клетки? Загадка казалась неразрешимой. Решить ее одной генетике (науке о наследственности) было не под силу. Здесь нужны разносторонний, комплексный подход, усилия ученых многих специальностей. И особенно это было необходимо по отношению к нуклеиновой кислоте. Биологическая роль и строение белков во многом не представляли секрета. А что можно сказать о нуклеиновых кислотах? Главным преимуществом нашего портала является не только ежедневное размещение ретро порно видео, но и его адаптация для просмотра с различных типов устройств, будь то компьютер, смартфон или планшет. Вся порнушка доступна абсолютно бесплатно, без необходимости регистрации и отправки сообщений, а также загрузки стороннего программного обеспечения. |
|
|
© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна: http://biologylib.ru/ 'Библиотека по биологии' |