НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

04.02.2012

Экспериментально показано образование многоклеточных эукариот из одноклеточных предков

Известно, что настоящие многоклеточные животные образовались на базе эукариотической клетки, хотя жизнь на планете испробовала для этой цели разные пути. Каким образом это могло происходить? В экспериментах на одноклеточных дрожжах ученые получили с помощью искусственного отбора многоклеточные ассоциации. Кластеры нарастали за счет того, что дочерние клетки после деления оставались вместе с материнскими, а не из-за слипания одиночных клеток, как это наблюдается в бактериальных пленках. Мутации, обеспечившие многоклеточность, оказались устойчивыми, а в пределах многоклеточных кластеров даже наметилось разделение функций.

Как принято сейчас считать (и, скорее всего, так оно и было), многоклеточность в истории земной жизни возникала не один раз. Мало того, в рамках этой темы мы сейчас помимо настоящих многоклеточных организмов обсуждаем разнородные ассоциации клеток, сформированные на базе бактерий, одноклеточных водорослей и простейших. Последние могут быть колониальными в течение всего жизненного цикла, как, например, шарик вольвокса, а могут превращаться в многоклеточный организм только по необходимости, как это происходит у колониальных амеб Dyctiostellium.

Многочисленные модели показывают, что настоящая многоклеточность может получиться только на базе эукариотической клетки и только из клеток, обладающих единообразным геномом. Предположим, что эукариотическая клетка уже существует; каким образом она превращается в многоклеточный организм? Что делает из законченного эгоиста, каковым является любой одноклеточный организм, совершенного коллективиста — представителя слаженного ансамбля клеток многоклеточного, в котором возможность размножаться оставлена только избранным? Первым этапом этого необычайного превращения является отказ расходиться после деления, затем дифференциация функций и структуры.

Почему клетки одноклеточных перестают расходиться после деления? В предыдущих исследованиях было, например, показано, что обычная одноклеточная водоросль хлорелла формирует восьмиклеточные конгломераты, если хлореллу в культуре активно выедают жгутиконосцы. Клетки водоросли, увеличивая размер, защищаются от истребления. Однако других примеров эукариот, которые демонстрируют переход от одиночной жизни к коллективной, пока нет. В этом смысле работа американских ученых из Миннесотского университета весьма полезна: ученые проследили весь процесс превращения отдельных клеток дрожжей в многоклеточные ассоциации. Они сделали акцент на механизме формирования многоклеточных структур и показали начальные этапы разделения функций у клеток в клеточных ассоциациях.

Эксперимент был поставлен следующим образом. Культуру дрожжей рассадили в десять пробирок. Затем в каждой из 10 линий провели отбор на «многоклеточность»: ежедневно пересаживали самую нижнюю фракцию культуры. Рецепт такой: сначала взболтать, потом дать постоять 45 минут, всё слить, оставив для пересаживания нижние 10 мл с клетками. Так как клеточные агрегаты тяжелее одиночных клеток, то они будут осаждаться быстрее. Поэтому в нижней части раствора доля клеточных агрегатов становилась всё выше. В результате отбора во всех пробирках через 2 месяца вырастали преимущественно клеточные агрегаты; микробиологи назвали получившийся фенотип «снежинками». Действительно, клеточные агрегаты хоть и не обладали строгой симметрией настоящих снежинок, но демонстрировали приблизительную центральную симметрию и имели разветвленные выросты, так что вполне соответствовали своему нику. Генотип этого новообразования оказался стабильным: когда отбор на многоклеточность сняли (продолжали пересаживать клетки, но из хорошо перемешанного раствора), то дрожжи всё равно формировали фенотип снежинок.

Снежинки теоретически могли получиться двумя способами. Во-первых, за счет слипания одиночных клеток, во-вторых, из-за отсутствия расхождения клеток после деления. Весь процесс образования агрегатов был заснят, так что можно увидеть его воочию. Кроме того, помогли и биохимические тесты по дифференциальному окрашиванию клеточных структур (клетки в снежинке соединяются в местах образования почек дочерних клеток). И то и другое безоговорочно доказывает, что многоклеточные снежинки происходят вторым способом: клетки после деления не расходятся. Достигая определенного размера, кластер отделяет многоклеточного потомка; дочерний кластер по диаметру меньше родительского примерно в три-пять раз.

Правила игры в дочки-матери эволюционировали, как выяснилось, вместе с размером кластеров. Чем больше кластер, тем хуже питаются центральные клетки и, следовательно, тем медленнее кластер растет. Значит, число его потомков станет уменьшаться по мере увеличения кластеров. Вместе с тем, увеличение числа потомков есть наинасущнейшая задача любого организма. Значит, новому многоклеточному организму нужно изобрести способ одновременно быстро расти и оставлять много потомков. В ходе отбора этот способ был найден: увеличить число клеток, подвергшихся апоптозу, то есть клеточному самоубийству. Отмершие клетки становятся слабым звеном в системе клеточных связей, таким образом облегчается отделение дочерних кластеров. Апоптоз — явление обычное для дрожжей, но здесь оно приобрело новое значение. В результате у многоклеточных дрожжей появилось своеобразное разделение функций: часть клеток размножается, а часть жертвует возможностью оставить собственных потомков и отмирает во благо остальных.

Елена Наймарк


Источники:

  1. elementy.ru








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru