НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

11.04.2017

Новый метод ученых МГУ позволил исследовать самые ранние стадии эмбриогенеза

Ученые биологического факультета МГУ имени М.В.Ломоносова впервые построили подробные карты пространственной организации генома в индивидуальных клетках и изучили особенности пространственной организации материнского и отцовского геномов в зиготах мыши.

Новый метод ученых МГУ позволил исследовать самые ранние стадии эмбриогенеза
Новый метод ученых МГУ позволил исследовать самые ранние стадии эмбриогенеза

Результаты исследований опубликованы в журнале Nature.

Исследования биологов МГУ подтвердили предложенную ранее модель, постулирующую, что при сохранении общих принципов упаковки генома характер укладки хроматиновой фибриллы в индивидуальных клетках может существенно различаться. Получение этих результатов стало возможным благодаря тому, что авторы разработали новый экспериментальный подход для исследования пространственной организации генома в ядрах индивидуальных клеток.

В ядрах клеток молекулы ДНК упакованы в особые структуры - хромосомы, - которые можно представить себе как сложные, но не случайным образом спутанные клубки. Вещество хромосом, представляющее собой в основном комплекс ДНК, РНК и белков, называется хроматином. Биологи разработали новую методику изучения того, как хроматин упакован в ядре живой клетки. Эта методика является значительно усовершенствованным вариантом классического подхода к исследованию трехмерной структуры генома - Hi-C (high-throughput chromosome conformation capture).

«Возьмем три условных участка ДНК: А, B и С. Первые два расположены друг за другом в геноме - они соседи, а третий, предположим, находится от них на расстоянии в несколько миллионов пар нуклеотидов. Но хромосома может быть так упакована, что фрагмент С окажется рядом с А или В в пространстве. Мы можем установить этот факт (не для трех случайных участков ДНК, а в масштабе всего генома одновременно) и использовать эту информацию для построения карт пространственной структуры хроматина в живой клетке, так работает метод Hi-C», - рассказал один из авторов работы, кандидат биологических наук Сергей Ульянов.

В стандартном методе Hi-C для проведения одного эксперимента, как правило, требуется несколько сотен тысяч и даже миллионов клеток. Новая методика позволяет работать с одной отдельно взятой клеткой и составлять ее индивидуальную карту трехмерной структуры хромосом. Основным новшеством в этой методике является отбор единичных ядер на заключительном этапе Hi-C-эксперимента и проведение так называемой полногеномной амплификации - процесса, в котором с использованием особого фермента можно получить десятки тысяч копий ДНК из одного клеточного ядра.

«Это ключевой этап нашей технологии. Полногеномная амплификация позволяет напрямую работать с геномами индивидуальных клеток, секвенировать их и проводить любые другие манипуляции, в том числе исследовать трехмерную организацию хроматина в одной отдельно взятой клетке. Так называемые single-cell технологии, то есть исследования и манипуляции с единичными клетками, сейчас являются бурно развивающейся областью молекулярной биологии», - сказал Сергей Ульянов.

С помощью нового метода ученые смогли изолировать из мышиных зигот отдельно материнское ядро и отцовское и посмотреть, чем пространственная организация материнского генома отличается от отцовского.

«Мы провели анализ пространственной организации генома в зиготах мыши. Оказалось, что ядра, мужское и женское, которые сосуществуют в одной клетке, в зиготе, принципиально различаются по тому, как в них уложен геном. В ядре, сформировавшемся из ядра сперматозоида, активные участки генома в пространстве отделены от неактивных, а в ядре с материнским геномом этого не наблюдается. Во всех предыдущих исследованиях в клетках млекопитающих это разделение имело место, так что это очень неожиданный результат», - прокомментировал один из авторов статьи, Илья Флямер.

Таким образом, новый метод позволяет исследовать самые ранние стадии эмбриогенеза, сразу после оплодотворения.

«Поскольку зигота - это тотипотентная клетка, которая может дать начало любому типу клеток в организме, возможно, полученные результаты помогут понять природу тотипотентости и дадут возможность приблизиться к более полному перепрограммированию соматических клеток, чем при создании индуцированных плюрипотентных стволовых клеток» - сказал Илья Флямер.

Пространственная организация хроматина является важным регуляторным инструментом, который клетка использует для управления экспрессией генов. В последнее время в научной литературе появляется все больше сообщений о том, что нарушения нормальной упаковки ДНК в ядре связаны с рядом тяжелых заболеваний человека и в первую очередь с некоторыми раковыми опухолями. Технология Hi-C на единичных клетках в будущем позволит исследовать отдельные, в том числе крайне немногочисленные, субпопуляции раковых клеток в составе опухолей и, возможно, приблизит нас к понимаю механизмов возникновения злокачественных новообразований.

Работа выполнена совместно с Институтом биологии гена РАН и коллегами из Австрии и США.


Источники:

  1. km.ru



Новое древо жизни включит «симбиомов» как отдельные организмы

Предок энтерококков появился 450 миллионов лет назад

Эксперимент на улитках подтвердил классическую идею о «двойной цене самцов»

Генетики строят родословное древо архей

Одноклеточные существа изобрели гарпунные пулеметы

Раскрыт один из секретов тихоходок

Обнаружены гигантские вирусы с расширенным репертуаром генов для синтеза белка

Первые шаги земной жизни




© Злыгостев Алексей Сергеевич, 2001-2017
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://biologylib.ru/ 'BiologyLib.ru: Библиотека по биологии'

Рейтинг@Mail.ru