НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

23.05.2017

Управлять нейронной сетью можно с помощью инфракрасного излучения

Сотрудники Института биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова РАН совместно с коллегами из Института высшей нервной деятельности и нейрофизиологии РАН и Московского государственного университета разработали метод стимуляции нервных клеток инфракрасным излучением.

Управлять нейронной сетью можно с помощью инфракрасного излучения
Управлять нейронной сетью можно с помощью инфракрасного излучения

Для этого они встроили в нейроны мышей змеиные белки, реагирующих на температуру – терморецепторы. Опубликованные в журнале Nature Communications результаты помогут без вживления в организм стимулировать нейронные сети в глубоких слоях тканей, а также управлять активностью других типов клеток в живых системах. В будущем это может помочь в терапии различных заболеваний нервной системы. Кратко о результатах работы сообщается в пресс-релизе ИБХ РАН.

«Ученых давно интересовал вопрос о том, как можно «точечно» управлять нейронами, – рассказывает Юлия Ермакова, сотрудница Лаборатории молекулярных технологий ИБХ РАН, первый автор статьи. – В 1979 году Френсис Крик, один из первооткрывателей структуры ДНК, высказал предположение, что главным вызовом в нейробиологии является создание методов, которые позволяли бы стимулировать определенный тип нервных клеток, в то время как другие клетки оставались бы нечувствительными к стимулу. Электроды и лекарства с этим не справлялись – слишком грубые и неточные инструменты. Крик считал, что для этих целей подойдет свет. Осуществить идею ученого удалось лишь в 2005 году, когда группа исследователей из Стэнфордского университета под руководством Карла Диссерота смогла изменить нейроны генно-инженерными способами и возбудить нервные клетки, облучив их светом. Этот метод назвали оптогенетикой – сочетание оптики и генетики».

Нейроны приобретают чувствительность к свету благодаря искусственно помещенным в них белкам-рецепторам, в природе они помогают живым организмам ориентироваться в окружающей среде. В зависимости от видов физического воздействия рецепторы делятся на различные классы. Так, световые сигналы воспринимаются родопсинами и фототропинами, а температурные колебания – терморецепторами семейства TRP (Transient receptor potential). Именно с их помощью мы чувствуем горячие или холодные объекты, а также вкус острой пищи или ментоловый «холодок». Терморецепторы легли в основу метода термогенетики, также позволяющего «точечно» воздействовать на нейроны длинноволновым инфракрасным излучением, причем гораздо глубже, по сравнению с видимым светом, проникающим в ткани.

Авторы нынешнего исследования использовали в качестве белков-рецепторов терморецепторы змей TRPA1, которые отвечают за термозрение – способность некоторых змей «видеть» теплые объекты на расстоянии. Это помогает животным ориентироваться в пространстве и охотиться в темноте.

Первая часть экспериментов проводилась на культуре клеток-нейронов мышей. Из оптоволоконной лазерной установки на нейроны подавали инфракрасный свет. Регистрировали их активацию, измеряя поток проходящих через оболочку клетки ионов – главных участников передачи сигналов в клетке.

«Так мы установили, что активация термочувствительных каналов TRPA1 происходит в течение первых миллисекунд после подачи лазерного импульса, – объясняет Юлия. – Это позволяет применять термогенетику для быстрой стимуляции нейронов и воспроизводить сложные комбинации различных импульсов со скоростью до 50 импульсов в секунду».

Чтобы подтвердить, что термогенетика может применяться для стимуляции поведенческих реакций в живом организме (in vivo), исследователи провели эксперимент на рыбках данио (Danio rerio), которых разделили на две группы. Рыбки из экспериментальной группы имели в определенных нейронах встроенные в оболочку клетки змеиные терморецепторы TRPA1, а из контрольной – только флуоресцентную («светящуюся») метку. После этого исследователи повышали температуру тела рыбы в определенной точке с помощью пучка инфракрасного света (диаметром 60 микрометров, что чуть больше размера крупного нейрона). В ответ на это экспериментальные рыбки испытывали ложное чувство прикосновения и пытались уплыть, делая рефлекторный мах хвостом, в то время как вторая группа рыбок была совершенно не чувствительна к воздействию лазера.

Исследование включало не только биологическую, но и физическую составляющую. Для проведения термогенетической стимуляции исключительно важно нагревать живую ткань на заданную температуру, не превышающую 1-2 градуса. Недостаточный нагрев не способен активировать нейроны. Избыточный приведет к перегреву и гибели нейронов. Поэтому коллектив из МГУ под руководством Алексея Желтикова разработал метод локальной детекции температуры с помощью квантовых эффектов в микрочастицах алмазов, у которых были специальные дефекты кристаллической решетки. Такой алмаз, помещенный на кончик оптоволокна, способен измерять температуру нагреваемого образца с высокой точностью.

«Метод термогенетики открывает широкие перспективы для его использования в науке и для дальнейших разработок, – говорит Всеволод Белоусов, руководитель исследования, заведующий Лабораторией молекулярных технологий ИБХ РАН. – Во-первых, ИК-излучение глубже проникает в ткань, а значит, появится возможность стимулировать более глубокие слои мозга. Более того, для нагрева можно использовать не только инфракрасное излучение, но и фокусированные СВЧ-волны или магниты высокой мощности. Во-вторых, термогенетика имеет огромное преимущество в работе с маленькими модельными животными, такими, как мальки рыб или плодовые мушки. В классических оптогенетических экспериментах они видят синий свет, используемый для активации нейронов, и пугаются его. ИК-излучение для них невидимо, поэтому можно не опасаться побочных реакций животного на яркий свет. В-третьих, полученный молекулярный и технический инструментарий можно использовать для активации не только нейронов, но и других клеток. Все вместе это приведет к появлению новых подходов к терапевтической стимуляции или, наоборот, подавлению функций различных клеток в организме».

Оптогенетика делает первые шаги в этой области, теперь к ней присоединится и термогенетика, выведенная этой работой на новый уровень.


Источники:

  1. polit.ru



«Альтернативная история» белков проливает свет на роль случайности в эволюции

Медузы тоже умеют спать

Можно ли повысить шансы на удачную мутацию?

Учёным впервые удалось успешно заморозить (и разморозить) зародыш рыбы

Новое древо жизни включит «симбиомов» как отдельные организмы

Предок энтерококков появился 450 миллионов лет назад

Эксперимент на улитках подтвердил классическую идею о «двойной цене самцов»

Генетики строят родословное древо архей

Одноклеточные существа изобрели гарпунные пулеметы

Раскрыт один из секретов тихоходок

Обнаружены гигантские вирусы с расширенным репертуаром генов для синтеза белка

Первые шаги земной жизни




© Злыгостев Алексей Сергеевич, 2001-2018
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://biologylib.ru/ 'BiologyLib.ru: Библиотека по биологии'

Рейтинг@Mail.ru