В самом широком смысле рост - это не только необратимое увеличение сухой массы как результат клеточного деления и увеличения размеров клеток, но также и последующий процесс развития. В процессе развития клетки специализируются для выполнения определенных функций в организме - это называется дифференцировкой. Другими словами, между клетками происходит разделение труда. Кроме того, как уже говорилось, при этом осуществляется также морфогенез. Как видно из табл. 21.2, степень дифференцировки клеток связана с уровнем филогенетической организации.
Таблица 21.2. Приблизительное число клеток и клеточных типов как отражение степени дифференцировки, наблюдаемой на разных ступенях филогенетического развития
Одна из интригующих проблем дифференцировки - это вопрос о ее механизме. Главным фактором роста служит клеточное деление, которое у всех многоклеточных организмов совершается путем митоза. Это означает, что все клетки, происходящие от исходной зиготы или споры, идентичны по своему генотипу и поэтому должны были бы иметь идентичную структуру и функцию. Очевидно, однако, что у взрослого организма это не так. Какие же механизмы создают различия между клетками, тканями, органами и системами органов? Структура и функции клеток определяются активностью генов, и если клетки различаются по своей структуре и функциям, то это, по-видимому, обусловлено различиями в экспрессии их генов. Это могло бы достигаться двумя способами: либо клетки при специализации утрачивают некоторые гены, сохраняя только гены, необходимые для своей специальной функции, либо специализация обусловлена "включением" и "выключением" разных генов в разных клетках. В начале 60-х годов стало очевидно, что действует второй механизм, во всяком случае у растений. Проф. Стьюард из Корнелльского университета показал, что если поместить дифференцированные клетки, например клетки флоэмы моркови, в подходящую культуральную среду, то из них может вырасти новое растение моркови; это означает, что клетки все еще содержат всю необходимую информацию. В 1967 г. Гёрдон, работая в Оксфордском университете, установил, что так же обстоит дело и у животных. Гёрдон пересаживал ядра из клеток кишечного эпителия шпорцевой лягушки (Xenopus) в яйца того же вида, ядра которых были предварительно разрушены ультрафиолетом. Небольшое число таких яиц нормально развивалось, прошло через стадию головастика и достигло половозрелости; это позволяет думать, что даже в дифференцированной клетке возможна реактивация генов, если они окажутся в подходящей среде. При использовании менее дифференцированных клеток, находившихся на такой ранней стадии развития, как бластула, частота случаев успешного развития была выше. С помощью этого метода можно получать любое число генетически идентичных лягушек. Идентичное потомство, полученное от одной родительской особи, называют клоном, а сам метод - клонированием (см. разд. 20.1.1).
Выращивать в культуре изолированные клетки млекопитающих трудно, а заставить их дифференцироваться - еще труднее. В этом сказывается высокая специализация клеток млекопитающих.
Уровень сложности, достигнутый в результате дифференцировки, может быть таким высоким, что он препятствует даже росту или делению клеток. Так обстоит дело с нейронами. В отличие от них клетки печени остаются сравнительно неспециализированными и способны выполнять множество различных функций (см. разд. 18.5). Если удалить у взрослого млекопитающего две трети печени, то она вскоре восстанавливает прежние размеры и форму. Это свидетельствует не только о высокой способности к регенерации, но и о том, что размеры органов каким-то образом предетерминированы.
Если ядра дифференцированных клеток полностью сохраняют свои генетические потенции, то это означает, что в регуляции дифференцировки участвует цитоплазма. Шпеман и Мангольд изучали влияние цитоплазматических факторов на ход развития. Пересаживая ткань от зародыша-донора зародышу - реципиенту, они сумели показать, что донорская ткань способна изменить процессы развития у реципиента. Такое воздействие называют индукцией, а участки эмбриона-донора, вызывающие индукцию,- организаторами. Более подробно процесс индукции и эксперименты Шпемана и Мангольд будут описаны в разд. 22.8.2. Каким именно образом осуществляется индукционное воздействие, не вполне ясно, однако полагают, что в этом участвует дифференциальная репрессия и активация генов в различных клетках (подробнее см. разд. 22.8.3).
На дифференцировку оказывают также влияние гормоны. Типичные примеры влияния гормонов на рост у растений и у различных животных описаны в этой главе, а также в гл. 15 и 16. Хотя действие ростовых гормонов у растений варьирует, имеющиеся данные указывают на то, что в некоторых отношениях оно сходно у всех организмов. Гормоны могут оказывать прямое или косвенное воздействие на гены, "включая" или "выключая" их в определенной последовательности, детерминирующей ход развития. При изучении гигантских хромосом из слюнных желез личинок двукрылых в разных участках этих хромосом были обнаружены утолщения - "пуфы" (см. разд. 22.8.5 и 23.5.1). Местоположение пуфов характерно для тех или иных стадий развития личинки. Эти участки - места активного синтеза мРНК; они соответствуют генам, которые включаются на определенных стадиях жизненного цикла и обеспечивают в конечном счете синтез веществ, необходимых на данной стадии. Введение личинке соответствующего гормона может вызвать образование пуфов у личинки, у которой были удалены железы, вырабатывающие этот гормон. Если же ввести личинке сверхоптимальную дозу гормона, нормальная последовательность включения генов ускорится и особь раньше достигнет взрослой стадии. Результаты этих исследований показывают, что гормоны нередко действуют путем включения генов, связанных с развитием.