|
Глава 4. Физиология микроорганизмовФизиология изучает жизненные функции микроорганизмов: питание, дыхание, рост и размножение. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных и вместе с тем взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм). В процессе ассимиляции происходит усвоение питательных веществ и использование их для синтеза клеточных структур. При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. В результате распада питательных веществ происходит расщепление сложных органических соединений на более простые, низкомолекулярные. Часть из них выводится из клетки, а другие снова используются клеткой для биосинтетических реакций и включаются в процессы ассимиляции. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов. Особенностью микроорганизмов является интенсивный обмен веществ. За сутки при благоприятных условиях одна микробная клетка может переработать такое количество питательных веществ, которое в 30-40 раз больше ее массы. Химический состав бактерийДля понимания процессов обмена веществ необходимо знать химический состав микроорганизмов. Микроорганизмы содержат те же химические вещества, что и клетки всех живых организмов. Важнейшими элементами являются органогены (углерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов. Микроорганизмы содержат также зольные или минеральные элементы. Большая часть их химически связана с органическими веществами, остальные присутствуют в клетке в виде солей. В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75-85%; на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 15-25%. Вода. Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур. Свободная вода принимает участие в химических реакциях, протекающих в клетке, является растворителем различных химических соединений, а также служит дисперсной средой для коллоидов. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий. Белки (50-80% сухого вещества) определяют важнейшие биологические свойства микроорганизмов. Это простые белки - протеины и сложные - протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопротеиды - соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды. Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорганизмов). Видовая специфичность микроорганизмов зависит от количественного и качественного состава белковых веществ. Нуклеиновые кислоты в микробной клетке выполняют те же функции, что и в клетках животного происхождения. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кислот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста. Углеводы (12-18% сухого вещества) используются микробной клеткой в качестве источника энергии и углерода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий. Клетки микроорганизмов содержат простые (моно- и дисахариды) и высокомолекулярные (полисахариды) углеводы. У ряда бактерий могут быть включения, по химическому составу напоминающие гликоген и крахмал, они играют роль запасных питательных веществ в клетке. Углеводный состав различен у разных видов микроорганизмов и зависит от их возраста и условий развития. Липиды (0,2-40% сухого вещества) являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обмене. В некоторых микробных клетках липиды выполняют роль запасных веществ. Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды. В клетках микроорганизмов липиды могут быть связаны с углеводами и белками, составляя сложный комплекс, определяющий токсические свойства микроорганизмов. Минеральные вещества - фосфор, натрий, калий, магний, сера, железо, хлор и другие - в среднем составляют 2-14% сухого вещества. Фосфор входит в состав нуклеиновых кислот, фосфолипидов, многих ферментов, а также АТФ (аденозинтрифосфорной кислоты), которая является аккумулятором энергии в клетке. Натрий участвует в поддержании осмотического давления в клетке. Железо содержится в дыхательных ферментах. Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий. Для развития микроорганизмов необходимы микроэлементы, содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активируют их. Соотношение отдельных химических элементов в микробной клетке может колебаться в зависимости от вида микроорганизма, состава питательной среды, характера обмена и условий существования во внешней среде. Питание бактерийВсем микроорганизмам для осуществления процессов питания, дыхания, размножения необходимы питательные вещества. В качестве питательных веществ и источников энергии микроорганизмы используют различные органические и неорганические соединения, для нормальной жизнедеятельности им требуются также микроэлементы и факторы роста. Процесс питания микроорганизмов имеет ряд особенностей: во-первых, поступление питательных веществ происходит через всю поверхность клетки; во-вторых, микробная клетка обладает исключительной быстротой метаболических реакций; в-третьих, микроорганизмы способны довольно быстро адаптироваться к изменяющимся условиям среды обитания. Разнообразие условий существования микроорганизмов обусловливает различные типы питания. Типы питания определяются по характеру усвоения углерода и азота. Источником других органогенов - водорода и кислорода служит вода. Вода необходима микроорганизмам и для растворения питательных веществ, так как они могут проникать в клетку только в растворенном виде. По усвоению углерода микроорганизмы делят на два типа: автотрофы и гетеротрофы. Автотрофы (от греч. autos - сам, trophe - питание) способны синтезировать сложные органические вещества из простых неорганических соединений. Они могут использовать в качестве источника углерода углекислоту и другие неорганические соединения углерода. Автотрофами являются многие почвенные бактерии (нитрифицирующие, серобактерии и др.). Гетеротрофы (от греч. heteros - другой, trophe - питание) для своего роста и развития нуждаются в готовых органических соединениях. Они могут усваивать углерод из углеводов (чаще всего глюкозы), многоатомных спиртов, органических кислот, аминокислот и других органических веществ. Гетеротрофы представляют обширную группу микроорганизмов, среди которых различают сапрофитов и паразитов. Сапрофиты (от греч. sapros - гнилой, phyton - растение) получают готовые органические соединения от отмерших организмов. Они играют важную роль в разложении мертвых органических остатков, например бактерии гниения и др. Паразиты (от греч. parasites - нахлебник) живут и размножаются за счет органических веществ живой клетки растений, животных или человека. К таким микроорганизмам относятся риккетсии, вирусы и некоторые простейшие (см. главу 11). По способности усваивать азот микроорганизмы делятся также на две группы: аминоавтотрофы и аминогетеротрофы. Аминоавтотрофы для синтеза белка клетки используют молекулярный азот воздуха (клубеньковые бактерии, азотобактер) или усваивают его из аммонийных солей. Аминогетеротрофы получают азот из органических соединений - аминокислот, сложных белков. К ним относят все патогенные микроорганизмы и большинство сапрофитов. По источникам энергии среди микроорганизмов различают фототрофы, использующие для биосинтетических реакций энергию солнечного света (пурпурные серобактерии) и хемотрофы, которые получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенные для человека виды). Однако резкой границы между типами питания микробов провести нельзя, так как есть такие виды микроорганизмов, которые могут переходить от гетеротрофного типа питания к автотрофному, и наоборот. В настоящее время для характеристики типов питания введена новая терминология: гетеротрофы называют органотрофами, а автотрофы - литотрофами (от греч. litos - камень), так как подобные микроорганизмы способны расти в чисто минеральной среде. Факторы роста. Микроорганизмы для своего роста и размножения нуждаются в особых веществах, которые сами синтезировать не могут и должны получать их в готовом виде. Эти вещества называют факторами роста, и нужны они микробным клеткам в небольших количествах. К ним относят различные витамины, некоторые аминокислоты (необходимые для синтеза белка), пуриновые и пиримидиновые основания (идущие на построение нуклеиновых кислот) и др. Многие факторы роста входят в состав различных ферментов и играют роль катализаторов в биохимических процессах. Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания. Транспорт питательных веществ. Питательные вещества могут проникать в цитоплазму микробных клеток только в виде небольших молекул и в растворенном виде. Сложные органические вещества (белки, полисахариды и др.) предварительно подвергаются воздействию ферментов, выделяемых микробной клеткой, и после этого становятся доступными для использования. Транспорт питательных веществ в клетку и выход из нее продуктов метаболизма осуществляется в основном через цитоплазматическую мембрану. Питательные вещества проникают в клетку несколькими способами: 1. Пассивная диффузия, т. е. перемещение веществ через толщу мембраны, в результате чего выравниваются концентрация веществ и осмотическое давление по обе стороны оболочки. Таким путем могут проникать питательные вещества, когда концентрация в среде значительно превышает концентрацию веществ в клетке. 2. Облегченная диффузия - проникновение питательных веществ в клетку с помощью активного переноса их особыми молекулами-переносчиками, называемыми пермеазами. Это вещества ферментной природы, которые локализованы на цитоплазматической мембране и обладают специфичностью. Каждая пермеаза адсорбирует соответствующее питательное вещество на наружной стороне цитоплазматической мембраны, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее транспортируемое вещество в цитоплазму. Этот процесс совершается без использования энергии, так как перемещение веществ происходит от более высокой концентрации к более низкой. 3. Активный транспорт питательных веществ осуществляется также с помощью пермеаз, но этот процесс требует затраты энергии. В этом случае питательное вещество может проникнуть в клетку, если концентрация его в клетке значительно превышает концентрацию в среде. 4. В ряде случаев транспортируемое вещество может подвергаться химической модификации, и такой способ переноса веществ получил название переноса радикалов или транслокации химических групп. По механизму передачи транспортируемого вещества этот процесс сходен с активным транспортом. Выход веществ из микробной клетки осуществляется или в виде пассивной диффузии, или в процессе облегченной диффузии с участием пермеаз. Ферменты и их роль в обмене веществФерменты - это вещества белковой природы, вырабатываемые живой клеткой. Они являются биологическими катализаторами и играют важную роль в обмене веществ микроорганизмов. По химическому строению, свойствам и механизму действия ферменты микробов сходны с ферментами, образующимися в клетках и тканях животных и растений. Ферменты микробной клетки локализуются в основном в цитоплазме, некоторые содержатся в ядре и клеточной оболочке. Микроорганизмы могут синтезировать самые разнообразные ферменты, относящиеся к шести известным классам: оксиредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Характерным свойством ферментов является специфичность действия, т. е. каждый фермент реагирует с определенным химическим соединением или катализирует одну или несколько близких химических реакций. Например, фермент лактаза расщепляет лактозу, мальтаза - мальтозу. Активность ферментов зависит от температуры среды, рН и других факторов. Для многих патогенных микроорганизмов оптимальное значение рН 7,2-7,4, а оптимальная температура находится в пределах 37-50° С. Ферменты микроорганизмов классифицируются на экзоферменты и эндоферменты. Экзоферменты, выделяясь во внешнюю среду, расщепляют макромолекулы питательных веществ до более простых соединений, которые могут быть усвоены микробной клеткой. Так, к экзоферментам относят гидролазы, вызывающие гидролиз белков, жиров, углеводов. В результате этих реакций белки расщепляются на аминокислоты и пептоны, жиры - на жирные кислоты и глицерин, углеводы (полисахариды)- на дисахариды и моносахариды. Распад белков вызывают ферменты протеазы, жиров - липазы, углеводов - карбогидразы. Эндоферменты участвуют в реакциях обмена веществ, происходящих внутри клетки. У микроорганизмов различают также конститутивные и индуктивные ферменты. Конститутивные ферменты постоянно находятся в микробной клетке независимо от условий существования. Это в основном ферменты клеточного обмена: протеазы, липазы, карбогидразы и др. Индуктивные (адаптивные) ферменты синтезируются в клетке только под влиянием соответствующего субстрата, находящегося в питательной среде, и когда микроорганизм вынужден его усваивать. Например, если бактерии, не вырабатывающие в обычных условиях фермента амилазы, расщепляющей крахмал, засеять на питательную среду, где единственным источником углерода служит крахмал, то они начинают синтезировать этот фермент. Таким образом, индуктивные ферменты позволяют микробной клетке приспособиться к изменившимся условиям существования. Наряду с ферментами обмена многие патогенные бактерии вырабатывают также ферменты агрессии, которые служат для преодоления естественных защитных барьеров макроорганизма и являются факторами патогенности. К таким ферментам относятся гиалуронидаза, дезоксирибонуклеаза, лецитовителлаза и др. Например, гиалуронидаза расщепляет межклеточное вещество соединительной ткани (гиалуроновую кислоту) и тем самым способствует распространению возбудителя в макроорганизме. Выделение микроорганизмами различных ферментов определяет их биохимические свойства. Ферментный состав любого микроорганизма является достаточно постоянным признаком, а различные виды микроорганизмов довольно четко различаются по набору ферментов. Поэтому изучение ферментативного состава имеет важное значение для дифференциации и идентификации различных микроорганизмов. Практическое использование микробных ферментов. Издавна человек использовал ферментативную активность дрожжей в пивоварении и виноделии. Применение ферментов в пищевой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Ферменты, выделенные из определенных видов микроскопических грибов, используются в процессе изготовления пшеничного теста, что позволяет увеличить объем, пористость выпеченного хлеба, улучшить его свежесть, аромат, вкус. Ферментные препараты некоторых микроорганизмов применяют для ускорения процессов выделения соков из плодов и ягод. С целью получения высококачественных кормов для сельскохозяйственных животных процессы микробного синтеза используются при силосовании зеленых трав; благодаря ферментативной активности дрожжей, размножающихся на отходах нефти (парафинах), получают белково-витаминные концентраты, которые являются ценным питательным веществом - их добавляют к грубым кормам для животных. Ферменты позволяют некоторым микроорганизмам усваивать метан, и эти виды бактерий используют для борьбы с метаном в шахтах. Известно, что ферменты бактерий (в частности, сенной палочки) широко применяются в качестве биодобавок к стиральному порошку "Ока" и стиральной пасте "Био". Эти препараты удаляют белковые загрязнения, так как ферменты расщепляют белки до водорастворимых веществ, легко смываемых при стирке. В медицинской промышленности с помощью ферментов микроорганизмов получают витамины, гормоны, алкалоиды. Дыхание бактерийДыхание (или биологическое окисление) микроорганизмов представляет собой совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности микробных клеток. Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться при постоянном притоке энергии. Микроорганизмы добывают энергию за счет окисления различных химических соединений: углеводов (чаще глюкозы), спиртов, органических кислот, жиров и т. д. Сущность окисления состоит в том, что окисляемое вещество отдает электроны, а восстанавливаемое получает их. По типу дыхания все микроорганизмы разделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные (необязательные) анаэробы. Облигатные аэробы (микобактерии туберкулеза и др.) живут и развиваются при свободном доступе кислорода, т. е. реакции окисления осуществляются у них при участии молекулярного кислорода с высвобождением большого количества энергии. Примером может служить окисление глюкозы в аэробных условиях: С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 2882,6 кД (688,5 ккал)
Существуют и микроаэрофилы, которые нуждаются в малых количествах кислорода (некоторые лептоспиры, бруцеллы). Облигатные анаэробы (клостридии столбняка, ботулизма и др.) способны жить и размножаться только в отсутствие свободного кислорода воздуха. Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Так, при анаэробном разложении 1 моль глюкозы энергии выделяется значительно меньше, чем при аэробном дыхании: С6Н12О6 → 2С2Н5ОН + 2СО2 + 130,6 кД (31,2 ккал)
Наличие свободного кислорода для облигатных анаэробов является губительным. Это связано с тем, что в присутствии кислорода конечным продуктом окисления органических соединений оказывается перекись водорода. А поскольку анаэробы не обладают способностью продуцировать фермент каталазу, расщепляющую перекись водорода, то она накапливается и оказывает токсическое действие на бактерии. Факультативные анаэробы могут размножаться как при наличии молекулярного кислорода, так и при отсутствии его. К ним относят большинство патогенных и сапрофитных бактерий. Процессы разложения органических веществ в бескислородных условиях, сопровождающиеся выделением энергии, называют также брожением. В зависимости от участия определенных микроорганизмов и конечных продуктов расщепления углеводов различают несколько типов брожения: спиртовое, осуществляемое дрожжами; молочно-кислое, вызываемое молочно-кислыми бактериями; масляно-кислое, обусловленное масляно-кислыми бактериями и др. Выделение тепла при дыхании микроорганизмов можно наблюдать при выращивании культур в сосудах, защищенных от потери тепла, - температура питательной среды будет постепенно повышаться. С выделением избыточного тепла при дыхании некоторых микроорганизмов связаны процессы самовозгорания торфа, навоза, влажного сена и хлопка. Биохимические механизмы дыхания более подробно изложены в учебниках биологической химии. Пигменты микроорганизмовНекоторые микроорганизмы (бактерии, грибы) в процессе обмена веществ образуют красящие вещества - пигменты. По химическому составу и свойствам пигменты неоднородны. Они подразделяются на растворимые в воде (синий пигмент - пиоцианин, выделяемый синегнойной палочкой); растворимые в спирте и нерастворимые в воде (красный пигмент - продигиозан, выделяемый чудесной палочкой); нерастворимые ни в воде, ни в спирте (черные и бурые пигменты дрожжей и плесеней). Нерастворимые в воде пигменты (липохромы) обычно окрашивают колонии бактерий (например, желтый, золотистый, палевый пигменты стафилококков), а растворимые - окрашивают питательную среду (синегнойная палочка). Образование пигментов у микробных клеток происходит на свету при достаточном доступе кислорода и определенном составе питательной среды. Пигментообразование в ряде случаев является стойким признаком микроорганизмов, что позволяет использовать его в качестве теста для идентификации некоторых бактерий (например, стафилококки, синегнойная палочка). Пигментообразование у микроорганизмов имеет определенное физиологическое значение. Пигменты защищают микробную клетку от природной ультрафиолетовой радиации, принимают участие в процессах дыхания, некоторые обладают антибиотическим действием (продигиозан). Особый интерес представляет история чудесной палочки Serratia marcescens, которая образует на хлебе, картофеле и других продуктах, содержащих крахмал, красные колонии, похожие на капли свежей крови. Древнеримский историк Квинт Курций Руф в своей книге "История Александра Македонского" описал одну из его побед при покорении Малой Азии, связанную с этим удивительным микробом. В 332 г. до н. э. при осаде города Тироса в армии Александра Македонского произошло неприятное событие - в хлебе появились большие красные пятна, напоминающие пятна крови, и солдат охватил страх. Они посчитали это плохим предзнаменованием. Однако хитрый придворный мудрец Александра истолковал это "знамение" так: "Кровавые пятна действительно знак богов, но поскольку они находятся внутри запеченного хлеба, то это означает гибель войск, находящихся внутри осажденных стен города. Боги указывают на свою благосклонность войскам Александра и дают понять, что его победа обеспечена". Толкование мудреца так подняло дух армии, что солдаты с воодушевлением атаковали стены города и в скором времени захватили его. Появление подобных красных пятен на продуктах во времена религиозных предрассудков и мракобесия средневековья широко использовалось церковниками для пропаганды "кары божьей" за неверие и служило основанием для жестокой расправы с вольнодумцами. Светящиеся и ароматообразующие микроорганизмыСреди микроорганизмов (бактерий, грибов) встречаются такие, которые обладают способностью светиться (люминесцировать). Свечение бактерий возникает в результате интенсивных процессов окисления,^сопровождающихся выделением энергии. Свечение морской воды, чешуи рыб, тела мелких ракообразных, сгнившего дерева объясняется присутствием на них светящихся бактерий или фотобактерий. Все светящиеся бактерии относятся к аэробам. Большая часть их видов обитает в морской воде, так как они лучше размножаются при повышенной концентрации соли (галофильные микробы). Могут светиться пауки, муравьи, термиты, живущие в симбиозе с фотобактериями. Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Ночью светятся и грибы, например осенние опенки. Светящиеся бактерии не вызывают процессов гниения, для большинства видов оптимальная температура жизнедеятельности - 15-18° С. Они хорошо растут на рыбных и мясных субстратах, что и обусловливает свечение мяса, рыбы. В начале XX века пытались использовать светящиеся бактерии в практических целях, их предлагали применять для "безопасных ламп" в пороховых погребах. Выявлены микроорганизмы, способные вырабатывать ароматические вещества, например уксусно-этиловый, уксусно-амиловый эфиры. Запахи некоторых микробов определяют ароматические свойства вин, молока, масла, сливок, сыров и т. д. Ароматообразующие бактерии широко используют при приготовлении различных пищевых продуктов. Некоторые микроорганизмы в процессе жизнедеятельности образуют вещества с неприятным запахом (индол, скатол, сероводород), что связано с разложением органических веществ. Рост и размножение бактерийОдним из важнейших проявлений жизнедеятельности микроорганизмов являются рост и размножение их. Рост определяется как увеличение размеров отдельной особи и упорядочное воспроизведение всех клеточных компонентов и структур. Под размножением понимают способность микроорганизмов к самовоспроизведению, в результате чего увеличивается число особей в популяции. Основной способ размножения у бактерий поперечное деление. Перед делением у бактериальных клеток, достигших определенного возраста, происходит удвоение молекул ДНК. Каждая дочерняя клетка получает копию материнской ДНК. Процесс деления считается законченным, когда цитоплазма дочерних клеток разделена перегородкой (рис. 9). Рис. 9. Ультратонкий срез делящейся клетки Е. coli В образовании перегородки принимает участие цитоплазматическая мембрана и клеточная стенка. Если перегородка формируется в середине делящейся клетки, то появляются дочерние клетки одинаковой величины (изоморфное деление). Иногда перегородка образуется ближе к одному из концов, тогда дочерние клетки имеют неодинаковый размер (гетероморфное деление). Деление бактерий (кокков) может происходить в различных плоскостях с образованием многообразных сочетаний клеток: цепочки стрептококков, парные соединения (диплококки), тетрады кокков, тюки (сарцина), гроздья (стафилококки). Палочковидные и извитые формы делятся поперечно и только в одной плоскости. У некоторых бактерий размножение происходит путем образования почки (микобактерии туберкулеза, клубеньковые бактерии), которая по величине меньше исходной клетки. Скорость размножения бактерий велика, что обусловлено интенсивностью их обмена. У большинства бактерий каждая клетка делится в течение 15-30 мин. Подсчитано, что за 24 ч у бактерий сменяется столько поколении, сколько у человека за 5000 лет. Есть виды бактерий, которые делятся медленно, 1 раз в сутки, например микобактерии туберкулеза. Для каждого вида бактерий скорость размножения может быть различной и зависит от возраста культуры, питательной среды, температуры, значения рН и многих других факторов. Размножение бактерий в жидкой питательной среде обладает рядом особенностей и происходит в несколько последовательных фаз (рис. 10). Рис. 10. Фазы размножения бактерий. аb - исходная стационарная; bd - фаза логарифмического роста; de - стационарная фаза; eg - стадия отмирания Фаза 1 - исходная стационарная (латентная): микробные клетки адаптируются к питательной среде, при этом повышается интенсивность обменных процессов, увеличивается размер клеток. Бактерии начинают размножаться лишь к концу первой фазы. Фаза 2 - логарифмического роста: бактерии энергично размножаются, вследствие чего количество клеток возрастает в геометрической прогрессии. В этой фазе бактерии обладают наибольшей биохимической и биологической активностью. Фаза 3 - стационарная: концентрация бактериальных клеток в среде остается постоянной. Это обусловлено тем, что число вновь появившихся бактерий почти равно числу отмирающих клеток. Длительность этой фазы у разных бактерий различна. Фаза 4 - отмирания: жизнеспособных клеток бактерий становится все меньше, и постепенно они погибают. Причинами гибели клеток могут быть истощение питательной среды, накопление в ней вредных продуктов обмена. В этой фазе у бактерий могут изменяться морфологические, биохимические и другие свойства. Фаза отмирания у различных видов бактерий неодинакова. Полная гибель культуры может наступить через несколько дней, недель или месяцев. Увеличение количества размножившихся в жидких питательных средах бактерий можно наблюдать через 18-24 ч - появляется либо помутнение среды, либо образование пленки или осадка. При этом характер изменения среды зависит как от вида и возраста бактериальной культуры, так и от состава самой питательной среды. При размножении на плотных питательных средах бактерии образуют на поверхности среды и внутри нее типичные для каждого микробного вида колонии. Каждая колония - это популяция микроорганизмов, развившаяся из одной клетки определенного вида бактерии. Колонии бактерий различаются по размеру, форме, строению, консистенции и цвету. Внешний вид колоний у некоторых бактерий настолько характерен, что может служить дифференциальным признаком для идентификации микроорганизмов. Например, колонии возбудителя сибирской язвы можно сравнить с локонами или львиной гривой (см. рис. 47). Спирохеты и риккетсии размножаются также поперечным делением. Процесс размножения (репродукция) вирусов (см. "Вирусы"). Контрольные вопросы1. Каков химический состав микробной клетки? 2. Какие типы питания различают у микроорганизмов? 3. Как осуществляется транспорт питательных веществ в микробную клетку? 4. Как различаются микроорганизмы по типу дыхания? 5. Какими способами осуществляется размножение бактерий? Вам желается оттянуться такой услугой, как классический секс? На этом знаменитом веб-сайте для мужчин http://prostitutkipenzyrest.com/myservices/klassicheckij-seks/ находится огромный каталог красивых проституток, которые могут претворить ваши желания. | Проститутки желают усладиться с вами в разнообразное время дня и ночи и раздать услуги сексуального характера на полном уровне качества. Не упустите чудную возможность. |
|
|
© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна: http://biologylib.ru/ 'Библиотека по биологии' |