19.3. Экскреция азотистых продуктов и осморегуляция
Основной источник конечных продуктов азотистого обмена - дезаминирование избытка аминокислот. В результате дезаминирования образуется аммиак, который чрезвычайно токсичен и подлежит выведению из организма. Будучи растворимым, аммиак может быть быстро и безопасно удален из организма, если он растворится в достаточном объеме воды. Для организмов, живущих в воде, это не составляет никакой проблемы, но это относится только к пресноводным организмам. Морские животные сталкиваются с острой проблемой получения воды, а наземные - с проблемой ее сохранения, поэтому для выведения азотистых отходов они могут использовать очень мало воды. Из табл. 19.2 видно, что у живущих в этих условиях организмов выработались иные пути экскреции азота. Они связаны с выработкой ряда анатомических, биохимических, физиологических и поведенческих механизмов, связанных с выведением азотистых веществ и одновременным поддержанием стационарного состава жидкостей тела. Так как проблемы экскреции и осморегуляции здесь связаны между собой, эти два процесса будут рассматриваться вместе.
Осморегуляция - это гомеосгатический механизм, с помощью которого у растений и животных поддерживается постоянство концентрации растворенных веществ в жидкостях внутренней среды. Жидкости тела делятся на внутриклеточные и внеклеточные. Например, у растений та жидкость, которая находится в вакуолях клеток, является внутриклеточной, а та, которая окружает клетки коры стебля или корней,- внеклеточная. У многоклеточных животных внутриклеточная жидкость распределена в клетках довольно равномерно, а внеклеточная представлена плазмой крови и тканевой жидкостью. Последняя подразделяется у позвоночных на собственно тканевую жидкость и лимфу. Для нормальной метаболической активности клеток очень важно, чтобы состав этих жидкостей оставался постоянным. Природа внутри- и внеклеточных жидкостей и регуляция их состава будут рассмотрены в разд. 19.3.2.
Слово "осморегуляция" означает не просто регуляцию водного баланса в организме, а регуляцию состава жидких сред организма, которые во всех случаях представляют собой растворы различной сложности. Детали физических и химических свойств растворов описаны в Приложении 1.4.
В живых системах даже в растворах с одинаковым осмотическим давлением (т. е. изотоничных друг другу) происходит перемещение молекул растворенных веществ, если их относительные концентрации различны. Перемещение молекул воды между двумя растворами определяется относительным осмотическим давлением этих растворов. Молекулы растворенных веществ проходят через полупроницаемые мембраны в направлении, зависящем от их относительной концентрации по обе стороны мембраны и от свойств самой мембраны. Это передвижение может быть пассивным или активным. В первом случае молекулы перемещаются путем диффузии "вниз" по концентрационному градиенту, т.е. из раствора с более высокой концентрацией в раствор с более низкой концентрацией. Во втором случае перемещение происходит против концентрационного градиента и осуществляется специальными механизмами, находящимися в мембране. Все мембраны организма, включая плазмалемму (клеточную, или плазматическую, мембрану), слои цитоплазмы, поверхности тела и легких, способны действовать как полупроницаемые мембраны, через которые могут проходить вода и растворенные вещества.
Концентрацию осмотически активных веществ в растворе мы будем называть в этой главе осмотическим потенциалом или осмолярностью и выражать в миллиосмолях на 1 л или на 1 кг воды.
В биологическом контексте при обсуждении осморегуляции концентрацию растворенных веществ можно выражать как депрессию точки замерзания раствора. Чистая вода замерзает при 0°С, но при добавлении растворимых веществ точка замерзания падает ниже 0°С, и новая температура замерзания показывает концентрацию растворенных веществ в растворе. Например, осмолярность морской воды составляет 1000 мосмоль/л, а ее депрессия точки замерзания равна -1,7 °С.