НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

предыдущая главасодержаниеследующая глава

16.5.4. Глаз млекопитающих

Глаз млекопитающих - орган чувств, состоящий из большого числа рецепторных клеток (палочек и колбочек сетчатки), сенсорных нейронов, образующих зрительный нерв, и сложной системы вспомогательных приспособлений. Такое устройство позволяет глазу воспринимать свет с различной длиной волны, отражаемый объектами, находящимися в поле зрения на разных расстояниях, и преобразовывать его в электрические импульсы, которые направляются в головной мозг и порождают удивительно точное восприятие.

Свет распространяется в виде волн электромагнитного излучения, и волны, воспринимаемые человеческим глазом, составляют узкую, так называемую видимую часть спектра (длины волн 380-760 нм; см. Приложение 1.7). Свет - один из видов энергии, он испускается и поглощается дискретными порциями - квантами, или фотонами. Каждый квант в видимой части спектра несет энергию, достаточную для того, чтобы вызвать фотохимическую реакцию в чувствительных клетках глаза. Работа глаза основана на тех же перечисленных ниже принципах, что и фотокамера, а именно он 1) контролирует количество света, проходящее внутрь; 2) фокусирует изображения предметов внешнего мира с помощью системы линз; 3) регистрирует изображение на чувствительной поверхности; 4) перерабатывает невидимое изображение во внутренний образ видимой картины мира.

Строение и функция человеческого глаза

Глаза расположены во впадинах черепа, называемых глазницами; глаз укреплен здесь при помощи четырех прямых и двух косых мышц, управляющих его движениями. Глазное яблоко человека имеет диаметр около 24 мм и весит 6-8 г. Большую часть глаза составляют вспомогательные структуры, назначение которых в том, чтобы проецировать поле зрения на сетчатку - слой фоторецепторных клеток, выстилающий глазное яблоко изнутри.

Стенка глаза состоит из трех концентрических слоев: 1) склеры (белковой оболочки) и роговицы; 2) сосудистой оболочки, ресничного тела, хрусталика и радужки; 3) сетчатки. Форма глаза поддерживается за счет гидростатического давления (25 мм рт. ст.) водянистой влаги и стекловидного тела. Схема строения человеческого глаза приведена на рис. 16.33. Ниже дается краткое перечисление различных его частей и выполняемых ими функций.

Рис. 16.33. Строение глаза млекопитающего
Рис. 16.33. Строение глаза млекопитающего

Склера - самая наружная оболочка глаза. Это очень плотная капсула, содержащая коллагеновые волокна; защищает глаз от повреждения и помогает глазному яблоку сохранять свою форму.

Роговица - прозрачная передняя сторона склеры. Благодаря искривленной поверхности действует как главная светопреломляющая структура.

Конъюнктива - тонкий прозрачный слой клеток, защищающий роговицу и переходящий в эпителий век. Конъюнктива не заходит на участок роговицы, прикрывающий радужку.

Веко - защищает роговицу от механического и химического повреждения, а сетчатку - от слишком яркого света.

Сосудистая оболочка - средняя оболочка; пронизана сосудами, снабжающими кровью сетчатку, и покрыта пигментными клетками, препятствующими отражению света от внутренних поверхностей глаза.

Ресничное (цилиарное) тело - место соединения склеры и роговицы. Состоит из эпителиальных клеток, кровеносных сосудов и цилиарной мышцы. Цилиарная мышца-кольцо, состоящее из гладких мышечных волокон, кольцевых и радиальных, которые изменяют форму хрусталика при аккомодации.

Цилиарная (циннова) связка - прикрепляет хрусталик к цилиарному телу.

Хрусталик - прозрачное эластичное двояковыпуклое образование. Обеспечивает тонкую фокусировку лучей света на сетчатке и разделяет камеры, заполненные водянистой влагой и стекловидным телом.

Водянистая влага - прозрачная жидкость, представляющая раствор солей. Секретируется цилиарным телом и переходит из глаза в кровь через шлеммов канал.

Радужка - кольцевая мышечная диафрагма, содержит пигмент, определяющий цвет глаз. Разделяет пространство, заполненное водянистой влагой, на переднюю и заднюю камеры и регулирует количество света, проникающего в глаз.

Зрачок - отверстие в радужке, через которое свет проходит внутрь глаза.

Стекловидное тело - прозрачное полужидкое вещество, поддерживающее форму глаза.

Сетчатка - внутренняя оболочка, содержащая фоторецепторные клетки (палочки и колбочки), а также тела и аксоны нейронов, образующих зрительный нерв.

Центральная ямка - наиболее чувствительный участок сетчатки, содержащий только колбочки. В этом участке наиболее точно фокусируются лучи света.

Зрительный нерв - пучок нервных волокон, проводящих импульсы от сетчатки в мозг.

Слепое пятно - место на сетчатке, где из глаза выходит зрительный нерв; оно не содержит ни палочек, ни колбочек и потому не обладает светочувствительностью.

16.8. Перечислите по порядку структуры, через которые проходит свет по пути к сетчатке.

Аккомодация

Аккомодация - это рефлекторный механизм, с помощью которого лучи света, исходящие от объекта, фокусируются на сетчатке. Он включает два процесса, каждый из которых будет рассмотрен отдельно.

Рефлекторное изменение диаметра зрачка. При ярком свете кольцевая мускулатура радужки сокращается, а радиальная расслабляется; в результате происходит сужение зрачка и количество света, по-падающего на сетчатку, уменьшается, что предотвращает ее повреждение (рис. 16.34). При слабом свете, наоборот, радиальная мускулатура сокращается, а кольцевая расслабляется. Дополнительное преимущество, доставляемое сужением зрачка, состоит в том, что увеличивается глубина резкости, и поэтому различия в расстоянии от объекта до глаза меньше сказываются на изображении.

Рис. 16.34. Реакция радужной оболочки (и тем самым зрачка) на изменение освещенности
Рис. 16.34. Реакция радужной оболочки (и тем самым зрачка) на изменение освещенности

Преломление (рефракция) света. От объекта, удаленного на расстояние больше 6 м, в глаз поступают практически параллельные лучи света, тогда как лучи, идущие от более близких предметов, заметно расходятся. В обоих случаях для того, чтобы свет сфокусировался на сетчатке, он должен быть преломлен (т. е. его путь изогнут), и для близких предметов преломление должно быть более сильным. Нормальный глаз способен точно фокусировать свет от объектов, находящихся на расстоянии от 25 см до бесконечности. Преломление света происходит при переходе его из одной среды в другую, имеющую иной коэффициент преломления, в частности на границе воздух - роговица и у поверхностей хрусталика. Форма роговицы не может изменяться, поэтому рефракция здесь зависит только от угла падения света на роговицу, который в свою очередь зависит от удаленности предмета. В роговице происходит наиболее сильное преломление света, а функция хрусталика состоит в окончательной "наводке на фокус". Форма хрусталика регулируется цилиарной мышцей: от степени ее сокращения зависит натяжение связки, поддерживающей хрусталик. Последняя воздействует на эластичный хрусталик и изменяет его форму (кривизну поверхности), а тем самым и степень преломления света. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет. Полная картина этих взаимоотношений представлена в табл. 16.8. На рис. 16.35 показаны изменения, происходящие в глазу при аккомодации для восприятия отдаленных и близких предметов.

Рис. 16.35. Аккомодация при восприятии лучей света от предметов, находящихся на разных расстояниях. А. Вид глаза сбоку. Б. Вид глаза спереди
Рис. 16.35. Аккомодация при восприятии лучей света от предметов, находящихся на разных расстояниях. А. Вид глаза сбоку. Б. Вид глаза спереди

Таблица 16.8. Взаимоотношения между структурами, участвующими в изменении формы хрусталика, и степенью преломления света
Таблица 16.8. Взаимоотношения между структурами, участвующими в изменении формы хрусталика, и степенью преломления света

На сетчатке изображение получается перевернутым, но это не мешает правильному восприятию, так как все дело не в пространственном положении изображения на сетчатке, а в интерпретации его мозгом.

Строение сетчатки

Сетчатка развивается как вырост переднего мозга, называемый глазным пузырьком. В процессе эмбрионального развития глаза фоторецепторный участок пузырька впячивается внутрь до соприкосновения с сосудистым слоем. При этом рецепторные клетки оказываются лежащими под слоем тел и аксонов нервных клеток, связывающих их с мозгом (рис. 16.36).

Рис. 16.36. Схематический разрез сетчатки глаза с деталями ультраструктуры палочек и колбочек. Показаны связи между сенсорными клетками и нейронами зрительного нерва. Лучи света должны пройти через слои ганглиозных клеток и других нейронов, прежде чем достигнут палочек и колбочек
Рис. 16.36. Схематический разрез сетчатки глаза с деталями ультраструктуры палочек и колбочек. Показаны связи между сенсорными клетками и нейронами зрительного нерва. Лучи света должны пройти через слои ганглиозных клеток и других нейронов, прежде чем достигнут палочек и колбочек

Сетчатка состоит из трех слоев, каждый из которых содержит клетки определенного типа. Самый наружный (наиболее удаленный от центра глазного яблока) светочувствительный слой содержит фоторецепторы - палочки и колбочки, частично погруженные в пигментный слой сосудистой оболочки. Затем идет промежуточный слой, содержащий биполярные нейроны, которые связывают фоторецепторы с клетками третьего слоя. В этом же промежуточном слое находятся горизонтальные и амакриновые клетки, обеспечивающие латеральное торможение. Третий слой - внутренний поверхностный слой - содержит ганглиозные клетки, дендриты которых соединены синапсами с биполярными клетками, а аксоны образуют зрительный нерв.

Строение и функция палочек и колбочек

Палочки и колбочки очень сходны по своему строению: в тех и других светочувствительные пигменты находятся на наружной поверхности внутриклеточных мембран наружного сегмента; и те и другие состоят из четырех участков, строение и функции которых кратко описаны ниже.

Наружный сегмент. Это тот светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Весь наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной и отделившимися от нее. В палочках число этих дисков составляет 600-1000, они представляют собой уплощенные мембранные мешочки и уложены наподобие стопки монет. В колбочках мембранных дисков меньше, и они представляют собой складки плазматической мембраны.

Перетяжка. Здесь наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент. Это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. В этом же участке расположено ядро.

Синаптическая область. В этом участке клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек или колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.

Различия между палочками и колбочками

Палочек в сетчатке содержится больше, чем колбочек (120⋅106 и 6-7⋅106 соответственно). Распределение палочек и колбочек тоже неодинаково. Тонкие, вытянутые палочки (размеры 50 х 3 мкм) равномерно распределены по всей сетчатке, кроме центральной ямки, где преобладают удлиненные конические колбочки (60 х 1,5 мкм). Так как в центральной ямке колбочки очень плотно упакованы (15⋅104 на 1 мм2), этот участок отличается высокой остротой зрения (разд. 16.4.2). В то же время палочки обладают большей чувствительностью к свету и реагируют на более слабое освещение. Палочки содержат только один зрительный пигмент, не способны различать цвета и используются преимущественно в ночном зрении. Колбочки содержат три зрительных пигмента, и это позволяет им воспринимать цвет; они используются главным образом при дневном свете. Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно и сигналы от них подвергаются конвергенции, но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения.

16.9. Объясните, почему конвергенция должна повышать чувствительность глаза к слабому свету.

16.10. Объясните, почему ночью предметы видны лучше, если не смотреть прямо на них.

Механизм фоторецепции

Палочки содержат светочувствительный пигмент родопсин, находящийся на наружной поверхности мембранных дисков. Родопсин, или зрительный пурпур, представляет собой сложную молекулу, образующуюся в результате обратимого связывания липопротеина скотопсина с небольшой молекулой поглощающего свет каротиноида - ретиналя. Последний представляет собой альдегидную форму витамина А и может существовать (в зависимости от освещения) в виде двух изомеров (рис. 16.37).

Рис. 16.37. Переход 11 - цис - ретиналя в полностью - транс - ретиналь под действием света
Рис. 16.37. Переход 11 - цис - ретиналя в полностью - транс - ретиналь под действием света

Установлено, что при воздействии света на родопсин один фотон способен вызывать изомеризацию, показанную на рис. 16.37. Ретиналь играет роль простетической группы, и полагают, что он занимает определенный участок на поверхности молекулы скотопсина и блокирует реактивные группы, участвующие в генерации электрической активности в палочках. Точный механизм фоторецепции пока неизвестен, но предполагается, что он включает два процесса. Первый из них - это превращение 11-цис-ретиналя в полностью - транс - ретиналь под действием света, а второй - расщепление родопсина через ряд промежуточных продуктов на ретиналь и скотопсин (процесс, называемый выцветанием):


После прекращения воздействия света родопсин тотчас же ресинтезируется. Вначале полностью - транс - ретиналь при участии фермента ретиналь - изомеразы превращается в 11 - цис - ретиналь, а затем последний соединяется со скотопсином. Этот процесс лежит в основе темновой адаптации. В полной темноте требуется около 30 мин, чтобы все палочки адаптировались и глаза приобрели максимальную чувствительность. Однако во время этого процесса проницаемость мембраны наружного сегмента для Na+ уменьшается, в то время как внутренний сегмент продолжает откачивать ионы Na+ наружу, и в результате внутри палочки возрастает отрицательный потенциал, т.е. происходит гиперполяризация (рис. 16.38). Это прямо противоположно тому, что обычно наблюдается в других рецепторных клетках, где раздражение вызывает деполяризацию, а не гиперполяризацию. Гиперполяризация замедляет высвобождение из палочек возбуждающего медиатора, который в темноте выделяется в наибольшем количестве. Биполярные клетки, связанные через синапсы с палочками, тоже отвечают гиперполяризацией, но в ганглиозных клетках, аксоны которых образуют зрительный нерв, в ответ на сигнал от биполярной клетки возникает распространяющийся потенциал действия.

Рис. 16.38. Схема строения палочки, иллюстрирующая предполагаемые изменения проницаемости наружного сегмента для Na+ под действием света. Отрицательные заряды на правой стороне палочки соответствуют потенциалу покоя, а на левой стороне - гиперполяризации
Рис. 16.38. Схема строения палочки, иллюстрирующая предполагаемые изменения проницаемости наружного сегмента для Na+ под действием света. Отрицательные заряды на правой стороне палочки соответствуют потенциалу покоя, а на левой стороне - гиперполяризации

Цветовое зрение

В видимой части спектра человеческий глаз поглощает свет всех длин волны, воспринимая их в виде шести цветов, каждый из которых соответствует определенному участку спектра (табл. 16.9). Существуют три типа колбочек - "красные", "зеленые" и "синие", которые содержат разные пигменты и, по данным электрофизиологических исследований, поглощают свет с различной длиной волны.

Таблица 16.9. Цвета видимого спектра и приблизительно соответствующие им длины волн
Таблица 16.9. Цвета видимого спектра и приблизительно соответствующие им длины волн

Цветовое зрение объясняют с позиций трехкомпонентной теории, согласно которой ощущения различных цветов и оттенков определяются степенью раздражения каждого типа колбочек светом, отражаемым от объекта. Так, например, одинаковая стимуляция всех колбочек вызывает ощущение белого цвета. Первичное различение цветов осуществляется в сетчатке, но окончательный цвет, который будет воспринят, определяется интегративными функциями мозга. Эффект смешения цветов лежит в основе цветного телевидения, цветной фотографии и живописи.

Цветовая слепота. Полное отсутствие или недостаток колбочек какого-либо типа может приводить к различным формам цветовой слепоты или аномалиям цветоощущения. Например, люди, у которых нет "красных" или "зеленых" колбочек, не различают красный и зеленый цвета, а те, у кого имеется недостаточное количество колбочек одного из этих двух типов, плохо различают некоторые оттенки красного и зеленого цвета. Для выявления дефектов цветового зрения применяют тестовые таблицы типа таблиц Исахари, на которых нанесены пятнышки разных цветов. На некоторых таблицах из этих пятнышек составлены цифры. Человек с нормальным цветовым зрением легко различает эти цифры, а лица с нарушенным цветоощущением видят другое число или вообще не видят никакой цифры.

Цветовая слепота передается по наследству как рецессивный признак, сцепленный с Х-хромосомой. Среди мужчин около 2% не различают красный цвет и 6%-зеленый, тогда как среди женщин аномалиями цветового зрения страдают только 0,4%.

16.11. Испытуемый помещает перед одним глазом зеленый фильтр, а перед другим - красный и смотрит на предмет. Используя данные, приведенные в табл. 16.9, опишите его цветовые ощущения.

Бинокулярное зрение и стереоскопическое зрение

Бинокулярное зрение имеет место в том случае, когда зрительные поля обоих глаз перекрываются таким образом, что их центральные ямки фиксируются на одном и том же объекте. Бинокулярное зрение имеет ряд преимуществ по сравнению с использованием одного глаза, в том числе расширяет поле зрения и дает возможность компенсировать повреждения одного глаза за счет другого. Кроме того, бинокулярное зрение снимает эффект слепого пятна и, наконец, лежит в основе стереоскопического зрения. Стереоскопическое зрение обусловлено тем, что на сетчатках двух глаз одновременно возникают слегка различающиеся изображения, которые мозг воспринимает как один образ. Чем больше глаза направлены вперед, тем больше стереоскопическое поле зрения. У человека, например, общее поле зрения охватывает 180°, а стереоскопическое - 140°. У лошади глаза расположены по бокам головы, поэтому их фронтальное стереоскопическое поле зрения ограниченно и используется лишь для рассматривания удаленных предметов. Чтобы лучше рассмотреть близкий предмет, лошадь поворачивает голову и пользуется монокулярным зрением. Для хорошего стереоскопического зрения необходимы глаза, направленные вперед, с центральными ямками, лежащими посередине их полей, что обеспечивает большую остроту зрения. В этом случае стереоскопическое зрение позволяет получать более точное представление о размерах и форме предмета, а также о расстоянии, на котором он находится. В основном стереоскопическое зрение характерно для хищных животных, которым оно абсолютно необходимо, если они ловят добычу, внезапно набрасываясь на нее или пикируя с высоты, как это делают представители семейства кошачьих, ястребы или орлы. У животных, которым приходится спасаться от хищников, глаза, напротив, расположены по бокам головы, благодаря чему они имеют более широкий обзор, но ограниченное стереоскопическое зрение. Например, у кролика общее поле зрения охватывает 360°, а фронтальное стереоскопическое поле - всего 20°. Анализ изображений, получаемых на сетчатке при стереоскопическом зрении, осуществляется в двух симметричных участках, составляющих зрительную кору.

Зрительные пути и зрительная кора

Нервные импульсы, возникающие в сетчатке, поступают по миллиону или около того волокон зрительного нерва в зрительную кору, расположенную в задней части затылочных долей. В этой зоне спроецированы все мельчайшие участки сетчатки, включающие, возможно, всего лишь по нескольку палочек и колбочек, и именно здесь зрительные сигналы интерпретируются и мы "видим". Однако то, что мы видим, приобретает смысл только после обмена сигналами с другими участками коры и прежде всего с височными долями, где хранится предшествующая зрительная информация и где она используется для анализа и идентификации текущих зрительных сигналов (разд. 16.2.4). В мозгу человека аксоны от левых половин сетчатки обоих глаз направляются к левой половине зрительной коры, а аксоны от правых половин сетчатки обоих глаз - к правой стороне зрительной коры. Аксоны, идущие от носовых половин обеих сетчаток, пересекаются; место их пересечения называется зрительным перекрестом или хиазмой (схема зрительных путей представлена на рис. 16.39). Около 20% волокон зрительного нерва не доходит до зрительной коры, а вступает в средний мозг и участвует в рефлекторной регуляции диаметра зрачка и движений глаз.

Рис. 16.39. Схема зрительных путей человека. Вид с нижней стороны мозга
Рис. 16.39. Схема зрительных путей человека. Вид с нижней стороны мозга

предыдущая главасодержаниеследующая глава

Избирайте себе шикарную проститутку и пишите ей в любое время, чтобы доболтаться о свидании. Постоянно симпатичные индивидуалки уже склонны прикатить к вам в гости и получить удовольствие симпатичным трахом без запретов.








© BIOLOGYLIB.RU, 2001-2020
При копировании ссылка обязательна:
http://biologylib.ru/ 'Библиотека по биологии'

Top.Mail.Ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь